IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipbs0038012123000976.html
   My bibliography  Save this article

The maximal covering location problem with accessibility indicators and mobile units

Author

Listed:
  • Vicencio-Medina, Salvador J.
  • Rios-Solis, Yasmin A.
  • Ibarra-Rojas, Omar Jorge
  • Cid-Garcia, Nestor M.
  • Rios-Solis, Leonardo

Abstract

We study the Maximal Covering Location Problem with Accessibility Indicators and Mobile Units that maximizes the facilities coverage, the accessibility of the zones to the open facilities, and the spatial disaggregation. The main characteristic of our problem is that mobile units can be deployed from open facilities to extend the coverage, accessibility, and opportunities for the inhabitants of the different demand zones. We formulate the Maximal Covering Location Problem with Accessibility Indicators and Mobile Units as a mixed-integer linear programming model. To solve larger instances, we propose a matheuristic (combination of exact and heuristic methods) composed of an Estimation of Distribution Algorithm and a parameterized Maximal Covering Location Problem with Accessibility Indicators and Mobile Units integer model. To test our methodology, we consider the Maximal Covering Location Problem with Accessibility Indicators and Mobile Units model to cover the low-income zones with Severe Acute Respiratory Syndrome Coronavirus 2 patients. Using official databases, we made a set of instances where we considered the poverty index, number of population, locations of hospitals, and Severe Acute Respiratory Syndrome Coronavirus 2 patients. The experimental results show the efficiency of our methodologies. Compared to the case without mobile units, we drastically improve the coverage and accessibility for the inhabitants of the demand zones.

Suggested Citation

  • Vicencio-Medina, Salvador J. & Rios-Solis, Yasmin A. & Ibarra-Rojas, Omar Jorge & Cid-Garcia, Nestor M. & Rios-Solis, Leonardo, 2023. "The maximal covering location problem with accessibility indicators and mobile units," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000976
    DOI: 10.1016/j.seps.2023.101597
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000976
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101597?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Erdemir, Elif Tokar & Batta, Rajan & Rogerson, Peter A. & Blatt, Alan & Flanigan, Marie, 2010. "Joint ground and air emergency medical services coverage models: A greedy heuristic solution approach," European Journal of Operational Research, Elsevier, vol. 207(2), pages 736-749, December.
    2. Doerner, Karl & Focke, Axel & Gutjahr, Walter J., 2007. "Multicriteria tour planning for mobile healthcare facilities in a developing country," European Journal of Operational Research, Elsevier, vol. 179(3), pages 1078-1096, June.
    3. Daniel Schermer, 2019. "Integration of Drones in Last-Mile Delivery: The Vehicle Routing Problem with Drones," Operations Research Proceedings, in: Bernard Fortz & Martine Labbé (ed.), Operations Research Proceedings 2018, pages 17-22, Springer.
    4. López-Ibáñez, Manuel & Dubois-Lacoste, Jérémie & Pérez Cáceres, Leslie & Birattari, Mauro & Stützle, Thomas, 2016. "The irace package: Iterated racing for automatic algorithm configuration," Operations Research Perspectives, Elsevier, vol. 3(C), pages 43-58.
    5. Berman, Oded & Drezner, Zvi & Krass, Dmitry & Wesolowsky, George O., 2009. "The variable radius covering problem," European Journal of Operational Research, Elsevier, vol. 196(2), pages 516-525, July.
    6. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    7. Jenkins, Phillip R. & Lunday, Brian J. & Robbins, Matthew J., 2020. "Robust, multi-objective optimization for the military medical evacuation location-allocation problem," Omega, Elsevier, vol. 97(C).
    8. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    9. Richard Church & Charles R. Velle, 1974. "The Maximal Covering Location Problem," Papers in Regional Science, Wiley Blackwell, vol. 32(1), pages 101-118, January.
    10. Kevin Curtin & Karen Hayslett-McCall & Fang Qiu, 2010. "Determining Optimal Police Patrol Areas with Maximal Covering and Backup Covering Location Models," Networks and Spatial Economics, Springer, vol. 10(1), pages 125-145, March.
    11. Rezaei, Jafar, 2016. "Best-worst multi-criteria decision-making method: Some properties and a linear model," Omega, Elsevier, vol. 64(C), pages 126-130.
    12. Yusuf Kuvvetli, 2023. "A goal programming model for two-stage COVID19 test sampling centers location-allocation problem," Central European Journal of Operations Research, Springer;Slovak Society for Operations Research;Hungarian Operational Research Society;Czech Society for Operations Research;Österr. Gesellschaft für Operations Research (ÖGOR);Slovenian Society Informatika - Section for Operational Research;Croatian Operational Research Society, vol. 31(1), pages 1-20, March.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hamid Mousavi & Soroush Avakh Darestani & Parham Azimi, 2021. "An artificial neural network based mathematical model for a stochastic health care facility location problem," Health Care Management Science, Springer, vol. 24(3), pages 499-514, September.
    2. Ibarra-Rojas, O.J. & Ozuna, L. & López-Piñón, D., 2020. "The maximal covering location problem with accessibility indicators," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    3. Dianne Villicaña-Cervantes & Omar J. Ibarra-Rojas, 2024. "Accessible location of mobile labs for COVID-19 testing," Health Care Management Science, Springer, vol. 27(1), pages 1-19, March.
    4. Ran Wei, 2016. "Coverage Location Models," International Regional Science Review, , vol. 39(1), pages 48-76, January.
    5. Farahani, Reza Zanjirani & Fallah, Samira & Ruiz, Rubén & Hosseini, Sara & Asgari, Nasrin, 2019. "OR models in urban service facility location: A critical review of applications and future developments," European Journal of Operational Research, Elsevier, vol. 276(1), pages 1-27.
    6. Tammy Drezner & Zvi Drezner, 2019. "Cooperative Cover of Uniform Demand," Networks and Spatial Economics, Springer, vol. 19(3), pages 819-831, September.
    7. Alan T. Murray, 2016. "Maximal Coverage Location Problem," International Regional Science Review, , vol. 39(1), pages 5-27, January.
    8. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    9. Ranon Jientrakul & Chumpol Yuangyai & Klongkwan Boonkul & Pakinai Chaicharoenwut & Suriyaphong Nilsang & Sittiporn Pimsakul, 2022. "Integrating Spatial Risk Factors with Social Media Data Analysis for an Ambulance Allocation Strategy: A Case Study in Bangkok," Sustainability, MDPI, vol. 14(16), pages 1-15, August.
    10. Hu, Xiaoxuan & Zhu, Waiming & Ma, Huawei & An, Bo & Zhi, Yanling & Wu, Yi, 2021. "Orientational variable-length strip covering problem: A branch-and-price-based algorithm," European Journal of Operational Research, Elsevier, vol. 289(1), pages 254-269.
    11. Wajid, Shayesta & Nezamuddin, N., 2023. "Capturing delays in response of emergency services in Delhi," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    12. Areej Alhothali & Budoor Alwated & Kamil Faisal & Sultanah Alshammari & Reem Alotaibi & Nusaybah Alghanmi & Omaimah Bamasag & Manal Bin Yamin, 2022. "Location-Allocation Model to Improve the Distribution of COVID-19 Vaccine Centers in Jeddah City, Saudi Arabia," IJERPH, MDPI, vol. 19(14), pages 1-21, July.
    13. DuBois, Eric & Schmidt, Adam & Albert, Laura A., 2021. "Location of trauma care resources with inter-facility patient transfers," Operations Research Perspectives, Elsevier, vol. 8(C).
    14. Sophie N. Parragh & Fabien Tricoire & Walter J. Gutjahr, 2022. "A branch-and-Benders-cut algorithm for a bi-objective stochastic facility location problem," OR Spectrum: Quantitative Approaches in Management, Springer;Gesellschaft für Operations Research e.V., vol. 44(2), pages 419-459, June.
    15. Muren, & Li, Hao & Mukhopadhyay, Samar K. & Wu, Jian-jun & Zhou, Li & Du, Zhiping, 2020. "Balanced maximal covering location problem and its application in bike-sharing," International Journal of Production Economics, Elsevier, vol. 223(C).
    16. Sam Ratick & Jeffrey Osleeb & Kangping Si, 2016. "The Maximal Cover Location Model with Hedging," International Regional Science Review, , vol. 39(1), pages 77-107, January.
    17. De la Fuente, Rodrigo & Aguayo, Maichel M. & Contreras-Bolton, Carlos, 2024. "An optimization-based approach for an integrated forest fire monitoring system with multiple technologies and surveillance drones," European Journal of Operational Research, Elsevier, vol. 313(2), pages 435-451.
    18. Karatas, Mumtaz & Eriskin, Levent, 2021. "The minimal covering location and sizing problem in the presence of gradual cooperative coverage," European Journal of Operational Research, Elsevier, vol. 295(3), pages 838-856.
    19. Timothy C. Matisziw & Mark Ritchey & Robert MacKenzie, 2022. "Change of Scene: The Geographic Dynamics of Resilience to Vehicular Accidents," Networks and Spatial Economics, Springer, vol. 22(3), pages 587-606, September.
    20. Blanco, Víctor & Gázquez, Ricardo & Saldanha-da-Gama, Francisco, 2023. "Multi-type maximal covering location problems: Hybridizing discrete and continuous problems," European Journal of Operational Research, Elsevier, vol. 307(3), pages 1040-1054.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pb:s0038012123000976. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.