IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v87y2023ipas0038012123000010.html
   My bibliography  Save this article

Analyzing the tradeoff between vulnerability and recoverability investments for interdependent infrastructure networks

Author

Listed:
  • Karakoc, Deniz Berfin
  • Barker, Kash
  • González, Andrés D.

Abstract

Critical cyber-physical infrastructure networks such as electric power and water networks form the backbone of a functional society as these networks provide the main resources for economic productivity, healthy communities, and general day-to-day operations. However, (i) these infrastructure networks have become more interdependent on each other in terms of functionality, and (ii) community networks become more dependent on these critical infrastructures in terms of existence. Thus, studying the entirety of their resilience process—both vulnerability and recoverability against a disruption—is of importance, particularly analyzing how investing (i) before to strengthen components versus (ii) afterward to restore disrupted components can affect the resilience of infrastructure networks in terms of system performance and time. This paper takes a first step toward analyzing the tradeoff between reducing vulnerability and enhancing recoverability in interdependent infrastructure networks with multiple time and budget allocations, accounting for not only the performance of the physical networks but also the potentially socially vulnerable communities that rely upon them. The proposed model (i) maximizes a measure of the resilience of the interdependent infrastructure networks, while it (ii) minimizes the total cost associated with the pre- and post-event resource allocation. The model is illustrated with networks in Shelby County, TN, USA.

Suggested Citation

  • Karakoc, Deniz Berfin & Barker, Kash & González, Andrés D., 2023. "Analyzing the tradeoff between vulnerability and recoverability investments for interdependent infrastructure networks," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
  • Handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000010
    DOI: 10.1016/j.seps.2023.101508
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012123000010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2023.101508?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Vahdat, Kamran & Smith, Nigel J. & Amiri, G. Ghodrati, 2014. "Fuzzy multicriteria for developing a risk management system in seismically prone areas," Socio-Economic Planning Sciences, Elsevier, vol. 48(4), pages 235-248.
    2. Alem, Douglas & Bonilla-Londono, Hector F. & Barbosa-Povoa, Ana Paula & Relvas, Susana & Ferreira, Deisemara & Moreno, Alfredo, 2021. "Building disaster preparedness and response capacity in humanitarian supply chains using the Social Vulnerability Index," European Journal of Operational Research, Elsevier, vol. 292(1), pages 250-275.
    3. Galindo, Gina & Batta, Rajan, 2013. "Prepositioning of supplies in preparation for a hurricane under potential destruction of prepositioned supplies," Socio-Economic Planning Sciences, Elsevier, vol. 47(1), pages 20-37.
    4. Sherali, Hanif D. & Carter, Todd B. & Hobeika, Antoine G., 1991. "A location-allocation model and algorithm for evacuation planning under hurricane/flood conditions," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 439-452, December.
    5. Jotshi, Arun & Gong, Qiang & Batta, Rajan, 2009. "Dispatching and routing of emergency vehicles in disaster mitigation using data fusion," Socio-Economic Planning Sciences, Elsevier, vol. 43(1), pages 1-24, March.
    6. Haghnevis, Moeed & Askin, Ronald G. & Armbruster, Dieter, 2016. "An agent-based modeling optimization approach for understanding behavior of engineered complex adaptive systems," Socio-Economic Planning Sciences, Elsevier, vol. 56(C), pages 67-87.
    7. Jamar Kattel, Prakash & Aros-Vera, Felipe, 2020. "Critical infrastructure location under supporting station dependencies considerations," Socio-Economic Planning Sciences, Elsevier, vol. 70(C).
    8. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    9. Kathleen Sherrieb & Fran Norris & Sandro Galea, 2010. "Measuring Capacities for Community Resilience," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 99(2), pages 227-247, November.
    10. Medal, Hugh R. & Pohl, Edward A. & Rossetti, Manuel D., 2014. "A multi-objective integrated facility location-hardening model: Analyzing the pre- and post-disruption tradeoff," European Journal of Operational Research, Elsevier, vol. 237(1), pages 257-270.
    11. He, Fei & Zhuang, Jun, 2016. "Balancing pre-disaster preparedness and post-disaster relief," European Journal of Operational Research, Elsevier, vol. 252(1), pages 246-256.
    12. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    13. Hannah Lobban & Yasser Almoghathawi & Nazanin Tajik & Kash Barker, 2021. "Community vulnerability perspective on robust protection planning in interdependent infrastructure networks," Journal of Risk and Reliability, , vol. 235(5), pages 798-813, October.
    14. Ouyang, Min, 2017. "A mathematical framework to optimize resilience of interdependent critical infrastructure systems under spatially localized attacks," European Journal of Operational Research, Elsevier, vol. 262(3), pages 1072-1084.
    15. Caunhye, Aakil M. & Nie, Xiaofeng & Pokharel, Shaligram, 2012. "Optimization models in emergency logistics: A literature review," Socio-Economic Planning Sciences, Elsevier, vol. 46(1), pages 4-13.
    16. R. Cantelmi & G. Di Gravio & R. Patriarca, 2021. "Reviewing qualitative research approaches in the context of critical infrastructure resilience," Environment Systems and Decisions, Springer, vol. 41(3), pages 341-376, September.
    17. Ghasemi, Peiman & Khalili-Damghani, Kaveh & Hafezalkotob, Ashkan & Raissi, Sadigh, 2020. "Stochastic optimization model for distribution and evacuation planning (A case study of Tehran earthquake)," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    18. Henry, Devanandham & Emmanuel Ramirez-Marquez, Jose, 2012. "Generic metrics and quantitative approaches for system resilience as a function of time," Reliability Engineering and System Safety, Elsevier, vol. 99(C), pages 114-122.
    19. David L. Alderson & Gerald G. Brown & W. Matthew Carlyle, 2015. "Operational Models of Infrastructure Resilience," Risk Analysis, John Wiley & Sons, vol. 35(4), pages 562-586, April.
    20. Xu, Min & Ouyang, Min & Hong, Liu & Mao, Zijun & Xu, Xiaolin, 2022. "Resilience-driven repair sequencing decision under uncertainty for critical infrastructure systems," Reliability Engineering and System Safety, Elsevier, vol. 221(C).
    21. Yan, Xihong & Ren, Xiaorong & Nie, Xiaofeng, 2022. "A budget allocation model for domestic airport network protection," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    22. Balaei, Behrooz & Noy, Ilan & Wilkinson, Suzanne & Potangaroa, Regan, 2021. "Economic factors affecting water supply resilience to disasters," Socio-Economic Planning Sciences, Elsevier, vol. 76(C).
    23. Marin, Giovanni & Modica, Marco & Paleari, Susanna & Zoboli, Roberto, 2021. "Assessing disaster risk by integrating natural and socio-economic dimensions: A decision-support tool," Socio-Economic Planning Sciences, Elsevier, vol. 77(C).
    24. Abazari, Seyed Reza & Aghsami, Amir & Rabbani, Masoud, 2021. "Prepositioning and distributing relief items in humanitarian logistics with uncertain parameters," Socio-Economic Planning Sciences, Elsevier, vol. 74(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Ying & Zhao, Ou & Zhang, Limao, 2024. "Multiplex networks in resilience modeling of critical infrastructure systems: A systematic review," Reliability Engineering and System Safety, Elsevier, vol. 250(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A data-driven distributionally robust approach for the optimal coupling of interdependent critical infrastructures under random failures," European Journal of Operational Research, Elsevier, vol. 309(2), pages 872-889.
    2. Bellè, Andrea & Abdin, Adam F. & Fang, Yi-Ping & Zeng, Zhiguo & Barros, Anne, 2023. "A resilience-based framework for the optimal coupling of interdependent critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    3. Rodríguez-Espíndola, Oscar & Ahmadi, Hossein & Gastélum-Chavira, Diego & Ahumada-Valenzuela, Omar & Chowdhury, Soumyadeb & Dey, Prasanta Kumar & Albores, Pavel, 2023. "Humanitarian logistics optimization models: An investigation of decision-maker involvement and directions to promote implementation," Socio-Economic Planning Sciences, Elsevier, vol. 89(C).
    4. Alem, Douglas & Caunhye, Aakil M. & Moreno, Alfredo, 2022. "Revisiting Gini for equitable humanitarian logistics," Socio-Economic Planning Sciences, Elsevier, vol. 82(PB).
    5. Wang, Qingyi & Nie, Xiaofeng, 2022. "A stochastic programming model for emergency supply planning considering transportation network mitigation and traffic congestion," Socio-Economic Planning Sciences, Elsevier, vol. 79(C).
    6. Jia, Chuanzhou & Zhang, Chi & Li, Yan-Fu & Li, Quan-Lin, 2023. "Joint pre- and post-disaster planning to enhance the resilience of critical infrastructures," Reliability Engineering and System Safety, Elsevier, vol. 231(C).
    7. Wei, Yian & Cheng, Yao & Liao, Haitao, 2024. "Optimal resilience-based restoration of a system subject to recurrent dependent hazards," Reliability Engineering and System Safety, Elsevier, vol. 247(C).
    8. Canbilen Sütiçen, Tuğçe & Batun, Sakine & Çelik, Melih, 2023. "Integrated reinforcement and repair of interdependent infrastructure networks under disaster-related uncertainties," European Journal of Operational Research, Elsevier, vol. 308(1), pages 369-384.
    9. Hao, Yucheng & Jia, Limin & Zio, Enrico & Wang, Yanhui & Small, Michael & Li, Man, 2023. "Improving resilience of high-speed train by optimizing repair strategies," Reliability Engineering and System Safety, Elsevier, vol. 237(C).
    10. A. Anaya-Arenas & J. Renaud & A. Ruiz, 2014. "Relief distribution networks: a systematic review," Annals of Operations Research, Springer, vol. 223(1), pages 53-79, December.
    11. Xiaoge Zhang & Sankaran Mahadevan & Kai Goebel, 2019. "Network Reconfiguration for Increasing Transportation System Resilience Under Extreme Events," Risk Analysis, John Wiley & Sons, vol. 39(9), pages 2054-2075, September.
    12. Li, Qing & Li, Mingchu & Tian, Yuan & Gan, Jianyuan, 2023. "A risk-averse tri-level stochastic model for locating and recovering facilities against attacks in an uncertain environment," Reliability Engineering and System Safety, Elsevier, vol. 229(C).
    13. Li, Qing & Li, Mingchu & Gong, Zhongqiang & Tian, Yuan & Zhang, Runfa, 2022. "Locating and protecting interdependent facilities to hedge against multiple non-cooperative limited choice attackers," Reliability Engineering and System Safety, Elsevier, vol. 223(C).
    14. Kuttler, Emma & Ghorbani-Renani, Nafiseh & Barker, Kash & González, Andrés D. & Johansson, Jonas, 2024. "Protection-interdiction-restoration for resilient multi-commodity networks," Reliability Engineering and System Safety, Elsevier, vol. 242(C).
    15. Tiong, Achara & Vergara, Hector A., 2023. "Evaluation of network expansion decisions for resilient interdependent critical infrastructures with different topologies," International Journal of Critical Infrastructure Protection, Elsevier, vol. 42(C).
    16. Fang, Yi-Ping & Zio, Enrico, 2019. "An adaptive robust framework for the optimization of the resilience of interdependent infrastructures under natural hazards," European Journal of Operational Research, Elsevier, vol. 276(3), pages 1119-1136.
    17. Kong, Jingjing & Zhang, Chao & Simonovic, Slobodan P., 2021. "Optimizing the resilience of interdependent infrastructures to regional natural hazards with combined improvement measures," Reliability Engineering and System Safety, Elsevier, vol. 210(C).
    18. Tiong, Achara & Vergara, Hector A., 2023. "A two-stage stochastic multi-objective resilience optimization model for network expansion of interdependent power–water networks under disruption," International Journal of Critical Infrastructure Protection, Elsevier, vol. 40(C).
    19. Ghorbani-Renani, Nafiseh & González, Andrés D. & Barker, Kash & Morshedlou, Nazanin, 2020. "Protection-interdiction-restoration: Tri-level optimization for enhancing interdependent network resilience," Reliability Engineering and System Safety, Elsevier, vol. 199(C).
    20. David Simchi-Levi & Nikolaos Trichakis & Peter Yun Zhang, 2019. "Designing Response Supply Chain Against Bioattacks," Operations Research, INFORMS, vol. 67(5), pages 1246-1268, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:87:y:2023:i:pa:s0038012123000010. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.