IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v85y2023ics0038012122001732.html
   My bibliography  Save this article

A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms

Author

Listed:
  • Kamran, Mehdi A.
  • Kia, Reza
  • Goodarzian, Fariba
  • Ghasemi, Peiman

Abstract

With the discovery of the COVID-19 vaccine, what has always been worrying the decision-makers is related to the distribution management, the vaccination centers' location, and the inventory control of all types of vaccines. As the COVID-19 vaccine is highly demanded, planning for its fair distribution is a must. University is one of the most densely populated areas in a city, so it is critical to vaccinate university students so that the spread of this virus is curbed. As a result, in the present study, a new stochastic multi-objective, multi-period, and multi-commodity simulation-optimization model has been developed for the COVID-19 vaccine's production, distribution, location, allocation, and inventory control decisions. In this study, the proposed supply chain network includes four echelons of manufacturers, hospitals, vaccination centers, and volunteer vaccine students. Vaccine manufacturers send the vaccines to the vaccination centers and hospitals after production. The students with a history of special diseases such as heart disease, corticosteroids, blood clots, etc. are vaccinated in hospitals because of accessing more medical care, and the rest of the students are vaccinated in the vaccination centers. Then, a system dynamic structure of the prevalence of COVID -19 in universities is developed and the vaccine demand is estimated using simulation, in which the demand enters the mathematical model as a given stochastic parameter. Thus, the model pursues some goals, namely, to minimize supply chain costs, maximize student desirability for vaccination, and maximize justice in vaccine distribution. To solve the proposed model, Variable Neighborhood Search (VNS) and Whale Optimization Algorithm (WOA) algorithms are used. In terms of novelties, the most important novelties in the simulation model are considering the virtual education and exerted quarantine effect on estimating the number of the vaccines. In terms of the mathematical model, one of the remarkable contributions is paying attention to social distancing while receiving the injection and the possibility of the injection during working and non-working hours, and regarding the novelties in the solution methodology, a new heuristic method based on a meta-heuristic algorithm called Modified WOA with VNS (MVWOA) is developed. In terms of the performance metrics and the CPU time, the MOWOA is discovered with a superior performance than other given algorithms. Moreover, regarding the data, a case study related to the COVID-19 pandemic period in Tehran/Iran is provided to validate the proposed algorithm. The outcomes indicate that with the demand increase, the costs increase sharply while the vaccination desirability for students decreases with a slight slope.

Suggested Citation

  • Kamran, Mehdi A. & Kia, Reza & Goodarzian, Fariba & Ghasemi, Peiman, 2023. "A new vaccine supply chain network under COVID-19 conditions considering system dynamic: Artificial intelligence algorithms," Socio-Economic Planning Sciences, Elsevier, vol. 85(C).
  • Handle: RePEc:eee:soceps:v:85:y:2023:i:c:s0038012122001732
    DOI: 10.1016/j.seps.2022.101378
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122001732
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101378?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Duijzer, Lotty Evertje & van Jaarsveld, Willem & Dekker, Rommert, 2018. "Literature review: The vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 268(1), pages 174-192.
    2. Diabat, Ali & Jabbarzadeh, Armin & Khosrojerdi, Amir, 2019. "A perishable product supply chain network design problem with reliability and disruption considerations," International Journal of Production Economics, Elsevier, vol. 212(C), pages 125-138.
    3. Robinson, Stewart, 2007. "A statistical process control approach to selecting a warm-up period for a discrete-event simulation," European Journal of Operational Research, Elsevier, vol. 176(1), pages 332-346, January.
    4. Chandra, Dheeraj & Kumar, Dinesh, 2021. "Evaluating the effect of key performance indicators of vaccine supply chain on sustainable development of mission indradhanush: A structural equation modeling approach," Omega, Elsevier, vol. 101(C).
    5. Gilani Larimi, Niloofar & Azhdari, Abolghasem & Ghousi, Rouzbeh & Du, Bo, 2022. "Integrating GIS in reorganizing blood supply network in a robust-stochastic approach by combating disruption damages," Socio-Economic Planning Sciences, Elsevier, vol. 82(PA).
    6. A. Charnes & W. W. Cooper, 1959. "Chance-Constrained Programming," Management Science, INFORMS, vol. 6(1), pages 73-79, October.
    7. Jun Zhuang & Gregory Saxton & Han Wu, 2014. "Publicity vs. impact in nonprofit disclosures and donor preferences: a sequential game with one nonprofit organization and N donors," Annals of Operations Research, Springer, vol. 221(1), pages 469-491, October.
    8. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    9. Martonosi, Susan E. & Behzad, Banafsheh & Cummings, Kayla, 2021. "Pricing the COVID-19 vaccine: A mathematical approach," Omega, Elsevier, vol. 103(C).
    10. Nidhi Subbaraman, 2020. "Who gets a COVID vaccine first? Access plans are taking shape," Nature, Nature, vol. 585(7826), pages 492-493, September.
    11. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Seyyed-Mahdi Hosseini-Motlagh & Mohammad Reza Ghatreh Samani & Behnam Karimi, 2023. "Resilient and social health service network design to reduce the effect of COVID-19 outbreak," Annals of Operations Research, Springer, vol. 328(1), pages 903-975, September.
    2. Kochakkashani, Farid & Kayvanfar, Vahid & Haji, Alireza, 2023. "Supply chain planning of vaccine and pharmaceutical clusters under uncertainty: The case of COVID-19," Socio-Economic Planning Sciences, Elsevier, vol. 87(PB).
    3. Shoaib, Mohd & Mustafee, Navonil & Madan, Karan & Ramamohan, Varun, 2023. "Leveraging multi-tier healthcare facility network simulations for capacity planning in a pandemic," Socio-Economic Planning Sciences, Elsevier, vol. 88(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    2. Gilani, Hani & Sahebi, Hadi, 2022. "A data-driven robust optimization model by cutting hyperplanes on vaccine access uncertainty in COVID-19 vaccine supply chain," Omega, Elsevier, vol. 110(C).
    3. Ekinci, Esra & Mangla, Sachin Kumar & Kazancoglu, Yigit & Sarma, P.R.S. & Sezer, Muruvvet Deniz & Ozbiltekin-Pala, Melisa, 2022. "Resilience and complexity measurement for energy efficient global supply chains in disruptive events," Technological Forecasting and Social Change, Elsevier, vol. 179(C).
    4. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    5. Samani, Mohammad Reza Ghatreh & Hosseini-Motlagh, Seyyed-Mahdi & Homaei, Shamim, 2020. "A reactive phase against disruptions for designing a proactive platelet supply network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 140(C).
    6. Wang, Fan & Xu, Danni & Zhuo, Xiaopo & Zhang, Chao & Liu, Yaoqi, 2022. "Improving consumer welfare in vaccine market: Pricing, government subsidies and consumer awareness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Muhammad Umar Farooq & Amjad Hussain & Tariq Masood & Muhammad Salman Habib, 2021. "Supply Chain Operations Management in Pandemics: A State-of-the-Art Review Inspired by COVID-19," Sustainability, MDPI, vol. 13(5), pages 1-33, February.
    8. Yadav, Amit Kumar & Shweta, & Kumar, Dinesh, 2023. "Blockchain technology and vaccine supply chain: Exploration and analysis of the adoption barriers in the Indian context," International Journal of Production Economics, Elsevier, vol. 255(C).
    9. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).
    10. Maleki, Abolfazl & Hemmati, Vahid & Reza Abazari, Seyed & Aghsami, Amir & Rabbani, Masoud, 2024. "Optimal distribution and waste management of Covid-19 vaccines from vaccination centers’ satisfaction perspective – A fuzzy time window-based VRP," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    11. Choi, Tsan-Ming & Shi, Xiutian, 2022. "Reducing supply risks by supply guarantee deposit payments in the fashion industry in the “new normal after COVID-19”," Omega, Elsevier, vol. 109(C).
    12. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    13. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    14. Jahani, Hamed & Chaleshtori, Amir Eshaghi & Khaksar, Seyed Mohammad Sadegh & Aghaie, Abdollah & Sheu, Jiuh-Biing, 2022. "COVID-19 vaccine distribution planning using a congested queuing system—A real case from Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    15. Shaker Ardakani, Elham & Gilani Larimi, Niloofar & Oveysi Nejad, Maryam & Madani Hosseini, Mahsa & Zargoush, Manaf, 2023. "A resilient, robust transformation of healthcare systems to cope with COVID-19 through alternative resources," Omega, Elsevier, vol. 114(C).
    16. Emanuele Blasioli & Bahareh Mansouri & Srinivas Subramanya Tamvada & Elkafi Hassini, 2023. "Vaccine Allocation and Distribution: A Review with a Focus on Quantitative Methodologies and Application to Equity, Hesitancy, and COVID-19 Pandemic," SN Operations Research Forum, Springer, vol. 4(2), pages 1-32, June.
    17. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    18. Aarti Singh & Ratri Parida, 2022. "Decision-Making Models for Healthcare Supply Chain Disruptions: Review and Insights for Post-pandemic Era," International Journal of Global Business and Competitiveness, Springer, vol. 17(2), pages 130-141, December.
    19. Asadpour, Milad & Olsen, Tava Lennon & Boyer, Omid, 2022. "An updated review on blood supply chain quantitative models: A disaster perspective," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 158(C).
    20. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:85:y:2023:i:c:s0038012122001732. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.