IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v163y2022ics1366554522001405.html
   My bibliography  Save this article

COVID-19 vaccine distribution planning using a congested queuing system—A real case from Australia

Author

Listed:
  • Jahani, Hamed
  • Chaleshtori, Amir Eshaghi
  • Khaksar, Seyed Mohammad Sadegh
  • Aghaie, Abdollah
  • Sheu, Jiuh-Biing

Abstract

Crisis-induced vaccine supply chain management has recently drawn attention to the importance of immediate responses to a crisis (e.g., the COVID-19 pandemic). This study develops a queuing model for a crisis-induced vaccine supply chain to ensure efficient coordination and distribution of different COVID-19 vaccine types to people with various levels of vulnerability. We define a utility function for queues to study the changes in arrival rates related to the inventory level of vaccines, the efficiency of vaccines, and a risk aversion coefficient for vaccinees. A multi-period queuing model considering congestion in the vaccination process is proposed to minimise two contradictory objectives: (i) the expected average wait time of vaccinees and (ii) the total investment in the holding and ordering of vaccines. To develop the bi-objective non-linear programming model, the goal attainment algorithm and the non-dominated sorting genetic algorithm (NSGA-II) are employed for small- to large-scale problems. Several solution repairs are also implemented in the classic NSGA-II algorithm to improve its efficiency. Four standard performance metrics are used to investigate the algorithm. The non-parametric Friedman and Wilcoxon signed-rank tests are applied on several numerical examples to ensure the privilege of the improved algorithm. The NSGA-II algorithm surveys an authentic case study in Australia, and several scenarios are created to provide insights for an efficient vaccination program.

Suggested Citation

  • Jahani, Hamed & Chaleshtori, Amir Eshaghi & Khaksar, Seyed Mohammad Sadegh & Aghaie, Abdollah & Sheu, Jiuh-Biing, 2022. "COVID-19 vaccine distribution planning using a congested queuing system—A real case from Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
  • Handle: RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001405
    DOI: 10.1016/j.tre.2022.102749
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554522001405
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2022.102749?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Jia & Zhang, H.M., 2015. "A generalized queuing model and its solution properties," Transportation Research Part B: Methodological, Elsevier, vol. 79(C), pages 78-92.
    2. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    3. Burak Kazaz & Scott Webster & Prashant Yadav, 2016. "Interventions for an Artemisinin-based Malaria Medicine Supply Chain," Production and Operations Management, Production and Operations Management Society, vol. 25(9), pages 1576-1600, September.
    4. Alam, Shahriar Tanvir & Ahmed, Sayem & Ali, Syed Mithun & Sarker, Sudipa & Kabir, Golam & ul-Islam, Asif, 2021. "Challenges to COVID-19 vaccine supply chain: Implications for sustainable development goals," International Journal of Production Economics, Elsevier, vol. 239(C).
    5. Karimi-Mamaghan, Maryam & Mohammadi, Mehrdad & Pirayesh, Amir & Karimi-Mamaghan, Amir Mohammad & Irani, Hassan, 2020. "Hub-and-spoke network design under congestion: A learning based metaheuristic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 142(C).
    6. Mohammadi, M. & Dehbari, S. & Vahdani, Behnam, 2014. "Design of a bi-objective reliable healthcare network with finite capacity queue under service covering uncertainty," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 72(C), pages 15-41.
    7. MacGregor Smith, J., 1991. "State-dependent queueing models in emergency evacuation networks," Transportation Research Part B: Methodological, Elsevier, vol. 25(6), pages 373-389, December.
    8. Jahani, Hamed & Abbasi, Babak & Alavifard, Farzad & Talluri, Srinivas, 2018. "Supply chain network redesign with demand and price uncertainty," International Journal of Production Economics, Elsevier, vol. 205(C), pages 287-312.
    9. Sayarshad, Hamid R. & Du, Xinpi & Gao, H. Oliver, 2020. "Dynamic post-disaster debris clearance problem with re-positioning of clearance equipment items under partially observable information," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 352-372.
    10. Govindan, Kannan & Mina, Hassan & Alavi, Behrouz, 2020. "A decision support system for demand management in healthcare supply chains considering the epidemic outbreaks: A case study of coronavirus disease 2019 (COVID-19)," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    11. Hsieh, Ying-Jiun, 2011. "Demand switching criteria for multiple products: An inventory cost analysis," Omega, Elsevier, vol. 39(2), pages 130-137, April.
    12. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2020. "A green delivery-pickup problem for home hemodialysis machines; sharing economy in distributing scarce resources," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    13. Lin, Qi & Zhao, Qiuhong & Lev, Benjamin, 2020. "Cold chain transportation decision in the vaccine supply chain," European Journal of Operational Research, Elsevier, vol. 283(1), pages 182-195.
    14. Smriti Mallapaty, 2020. "The coronavirus is most deadly if you are older and male — new data reveal the risks," Nature, Nature, vol. 585(7823), pages 16-17, September.
    15. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    16. Chowdhury, Priyabrata & Paul, Sanjoy Kumar & Kaisar, Shahriar & Moktadir, Md. Abdul, 2021. "COVID-19 pandemic related supply chain studies: A systematic review," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 148(C).
    17. Geroliminis, Nikolas & Karlaftis, Matthew G. & Skabardonis, Alexander, 2009. "A spatial queuing model for the emergency vehicle districting and location problem," Transportation Research Part B: Methodological, Elsevier, vol. 43(7), pages 798-811, August.
    18. Li, Xin & Pan, Yanchun & Jiang, Shiqiang & Huang, Qiang & Chen, Zhimin & Zhang, Mingxia & Zhang, Zuoyao, 2021. "Locate vaccination stations considering travel distance, operational cost, and work schedule," Omega, Elsevier, vol. 101(C).
    19. Brandeau, Margaret L. & Zaric, Gregory S. & Richter, Anke, 2003. "Resource allocation for control of infectious diseases in multiple independent populations: beyond cost-effectiveness analysis," Journal of Health Economics, Elsevier, vol. 22(4), pages 575-598, July.
    20. Darmawan, Agus & Wong, Hartanto & Thorstenson, Anders, 2021. "Supply chain network design with coordinated inventory control," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    21. Stephen E. Chick & Hamed Mamani & David Simchi-Levi, 2008. "Supply Chain Coordination and Influenza Vaccination," Operations Research, INFORMS, vol. 56(6), pages 1493-1506, December.
    22. Kargar, Bahareh & Pishvaee, Mir Saman & Jahani, Hamed & Sheu, Jiuh-Biing, 2020. "Organ transportation and allocation problem under medical uncertainty: A real case study of liver transplantation," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 134(C).
    23. Rakesh Kumar & Sapana Sharma, 2018. "Transient analysis of an M/M/c queuing system with balking and retention of reneging customers," Communications in Statistics - Theory and Methods, Taylor & Francis Journals, vol. 47(6), pages 1318-1327, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Xin & Jiang, Ruiwei & Qi, Mingyao, 2023. "A robust optimization problem for drone-based equitable pandemic vaccine distribution with uncertain supply," Omega, Elsevier, vol. 119(C).
    2. Tanrıverdi, Gökhan & Ecer, Fatih & Durak, Mehmet Şahin, 2022. "Exploring factors affecting airport selection during the COVID-19 pandemic from air cargo carriers’ perspective through the triangular fuzzy Dombi-Bonferroni BWM methodology," Journal of Air Transport Management, Elsevier, vol. 105(C).
    3. Sayarshad, Hamid R., 2023. "Interventions in demand and supply sides for vaccine supply chain: An analysis on monkeypox vaccine," Operations Research Perspectives, Elsevier, vol. 11(C).
    4. Maleki, Abolfazl & Hemmati, Vahid & Reza Abazari, Seyed & Aghsami, Amir & Rabbani, Masoud, 2024. "Optimal distribution and waste management of Covid-19 vaccines from vaccination centers’ satisfaction perspective – A fuzzy time window-based VRP," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    5. Karakaya, Sırma & Balcik, Burcu, 2024. "Developing a national pandemic vaccination calendar under supply uncertainty," Omega, Elsevier, vol. 124(C).
    6. Wang, Fan & Xu, Danni & Zhuo, Xiaopo & Zhang, Chao & Liu, Yaoqi, 2022. "Improving consumer welfare in vaccine market: Pricing, government subsidies and consumer awareness," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 167(C).
    7. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    8. Kargar, Bahareh & MohajerAnsari, Pedram & Esra Büyüktahtakın, İ. & Jahani, Hamed & Talluri, Sri, 2024. "Data-driven modeling for designing a sustainable and efficient vaccine supply chain: A COVID-19 case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 184(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Manupati, Vijaya Kumar & Schoenherr, Tobias & Subramanian, Nachiappan & Ramkumar, M. & Soni, Bhanushree & Panigrahi, Suraj, 2021. "A multi-echelon dynamic cold chain for managing vaccine distribution," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    2. Muckstadt, John A. & Klein, Michael G. & Jackson, Peter L. & Gougelet, Robert M. & Hupert, Nathaniel, 2023. "Efficient and effective large-scale vaccine distribution," International Journal of Production Economics, Elsevier, vol. 262(C).
    3. Fadaki, Masih & Abareshi, Ahmad & Far, Shaghayegh Maleki & Lee, Paul Tae-Woo, 2022. "Multi-period vaccine allocation model in a pandemic: A case study of COVID-19 in Australia," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 161(C).
    4. Choudhury, Nishat Alam & Ramkumar, M. & Schoenherr, Tobias & Singh, Shalabh, 2023. "The role of operations and supply chain management during epidemics and pandemics: Potential and future research opportunities," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 175(C).
    5. Esmizadeh, Yalda & Bashiri, Mahdi & Jahani, Hamed & Almada-Lobo, Bernardo, 2021. "Cold chain management in hierarchical operational hub networks," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 147(C).
    6. Nishant Saravanan & Jessica Olivares-Aguila & Alejandro Vital-Soto, 2022. "Bibliometric and Text Analytics Approaches to Review COVID-19 Impacts on Supply Chains," Sustainability, MDPI, vol. 14(23), pages 1-33, November.
    7. Hu, Hui & Xu, Jiajun & Liu, Mengqi & Lim, Ming K., 2023. "Vaccine supply chain management: An intelligent system utilizing blockchain, IoT and machine learning," Journal of Business Research, Elsevier, vol. 156(C).
    8. Maleki, Abolfazl & Hemmati, Vahid & Reza Abazari, Seyed & Aghsami, Amir & Rabbani, Masoud, 2024. "Optimal distribution and waste management of Covid-19 vaccines from vaccination centers’ satisfaction perspective – A fuzzy time window-based VRP," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 183(C).
    9. Xie, Lei & Hou, Pengwen & Han, Hongshuai, 2021. "Implications of government subsidy on the vaccine product R&D when the buyer is risk averse," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 146(C).
    10. Gupta, Varun & Perera, Sandun, 2021. "Managing surges in online demand using bandwidth throttling: An optimal strategy amid the COVID-19 pandemic," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 151(C).
    11. Queiroz, Maciel M. & Fosso Wamba, Samuel & Chiappetta Jabbour, Charbel Jose & Machado, Marcio C., 2022. "Supply chain resilience in the UK during the coronavirus pandemic: A resource orchestration perspective," International Journal of Production Economics, Elsevier, vol. 245(C).
    12. Xu, Danni & Wang, Fan & Zhuo, Xiaopo & Liu, Yaoqi, 2024. "The performance of government subsidy schemes in a competitive vaccine market considering consumers' free-riding behavior," International Journal of Production Economics, Elsevier, vol. 268(C).
    13. Yigit Kazancoglu & Muruvvet Deniz Sezer & Melisa Ozbiltekin-Pala & Murat Kucukvar, 2022. "Investigating the role of stakeholder engagement for more resilient vaccine supply chains during COVID-19," Operations Management Research, Springer, vol. 15(1), pages 428-439, June.
    14. Abhijit Majumdar & Rohit Agrawal & Rakesh D. Raut & Balkrishna E. Narkhede, 2023. "Two years of COVID-19 pandemic: Understanding the role of knowledge-based supply chains towards resilience through bibliometric and network analyses," Operations Management Research, Springer, vol. 16(3), pages 1105-1121, September.
    15. Hosseini-Motlagh, Seyyed-Mahdi & Samani, Mohammad Reza Ghatreh & Homaei, Shamim, 2023. "Design of control strategies to help prevent the spread of COVID-19 pandemic," European Journal of Operational Research, Elsevier, vol. 304(1), pages 219-238.
    16. Kedwadee Sombultawee & Pattama Lenuwat & Natdanai Aleenajitpong & Sakun Boon-itt, 2022. "COVID-19 and Supply Chain Management: A Review with Bibliometric," Sustainability, MDPI, vol. 14(6), pages 1-21, March.
    17. Paul, Ananna & Shukla, Nagesh & Trianni, Andrea, 2023. "Modelling supply chain sustainability challenges in the food processing sector amid the COVID-19 outbreak," Socio-Economic Planning Sciences, Elsevier, vol. 87(PA).
    18. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    19. Rozhkov, Maxim & Ivanov, Dmitry & Blackhurst, Jennifer & Nair, Anand, 2022. "Adapting supply chain operations in anticipation of and during the COVID-19 pandemic," Omega, Elsevier, vol. 110(C).
    20. Sara Alonso-Muñoz & Rocío González-Sánchez & Cristina Siligardi & Fernando E. García-Muiña, 2021. "New Circular Networks in Resilient Supply Chains: An External Capital Perspective," Sustainability, MDPI, vol. 13(11), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:163:y:2022:i:c:s1366554522001405. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.