IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v84y2022ics0038012122001902.html
   My bibliography  Save this article

A multi-period model for reorganising urban household waste recycling networks

Author

Listed:
  • Zaharudin, Zati Aqmar
  • Brint, Andrew
  • Genovese, Andrea

Abstract

Managing waste is a crucial challenge for modern societies. Within the UK government's ambitious environmental targets, municipal Household Waste Recycling Centres represent key facilities. However, local authority budgets are under severe strain due to reductions in central government funding. Therefore, local councils often need to perform reconfigurations of the recycling centres networks, by reducing the number of sites or their opening hours while still ensuring adequate service levels. This paper describes a novel multi-period mathematical programming model for optimising reorganisational actions within Household Waste Recycling Centre networks. The model is tested on a case study based on an English local authority, in order to demonstrate its applicability to a real-world scenario, and its role in supporting decision-makers in deciding the best way to reorganise Household Waste Recycling Centres.

Suggested Citation

  • Zaharudin, Zati Aqmar & Brint, Andrew & Genovese, Andrea, 2022. "A multi-period model for reorganising urban household waste recycling networks," Socio-Economic Planning Sciences, Elsevier, vol. 84(C).
  • Handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001902
    DOI: 10.1016/j.seps.2022.101396
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012122001902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2022.101396?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bruno, Giuseppe & Diglio, Antonio & Piccolo, Carmela & Cannavacciuolo, Lorella, 2019. "Territorial reorganization of regional blood management systems: Evidences from an Italian case study," Omega, Elsevier, vol. 89(C), pages 54-70.
    2. Vladimir Marianov, 2003. "Location of Multiple-Server Congestible Facilities for Maximizing Expected Demand, when Services are Non-Essential," Annals of Operations Research, Springer, vol. 123(1), pages 125-141, October.
    3. ReVelle, Charles & Murray, Alan T. & Serra, Daniel, 2007. "Location models for ceding market share and shrinking services," Omega, Elsevier, vol. 35(5), pages 533-540, October.
    4. Sonmez, Ayse Durukan & Lim, Gino J., 2012. "A decomposition approach for facility location and relocation problem with uncertain number of future facilities," European Journal of Operational Research, Elsevier, vol. 218(2), pages 327-338.
    5. Corberán, Ángel & Landete, Mercedes & Peiró, Juanjo & Saldanha-da-Gama, Francisco, 2020. "The facility location problem with capacity transfers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 138(C).
    6. Alexander Shulman, 1991. "An Algorithm for Solving Dynamic Capacitated Plant Location Problems with Discrete Expansion Sizes," Operations Research, INFORMS, vol. 39(3), pages 423-436, June.
    7. Tony J. Van Roy & Donald Erlenkotter, 1982. "A Dual-Based Procedure for Dynamic Facility Location," Management Science, INFORMS, vol. 28(10), pages 1091-1105, October.
    8. David Innes & Gemma Tetlow, 2015. "Delivering Fiscal Squeeze by Cutting Local Government Spending," Fiscal Studies, Institute for Fiscal Studies, vol. 36, pages 303-325, September.
    9. Boyacı, Burak & Geroliminis, Nikolas, 2015. "Approximation methods for large-scale spatial queueing systems," Transportation Research Part B: Methodological, Elsevier, vol. 74(C), pages 151-181.
    10. Giuseppe Bruno & Andrea Genovese, 2012. "A Spatial Interaction Model for the Representation of the Mobility of University Students on the Italian Territory," Networks and Spatial Economics, Springer, vol. 12(1), pages 41-57, March.
    11. Bruno, Giuseppe & Cavola, Manuel & Diglio, Antonio & Piccolo, Carmela, 2020. "Improving spatial accessibility to regional health systems through facility capacity management," Socio-Economic Planning Sciences, Elsevier, vol. 71(C).
    12. VAN ROY, Tony J. & ERLENKOTTER, Donald, 1982. "A dual-based procedure for dynamic facility location," LIDAM Reprints CORE 490, Université catholique de Louvain, Center for Operations Research and Econometrics (CORE).
    13. Robert Aboolian & Oded Berman & Vedat Verter, 2016. "Maximal Accessibility Network Design in the Public Sector," Transportation Science, INFORMS, vol. 50(1), pages 336-347, February.
    14. Curran, Anthony & Williams, Ian D. & Heaven, Sonia, 2007. "Management of household bulky waste in England," Resources, Conservation & Recycling, Elsevier, vol. 51(1), pages 78-92.
    15. Mehdi Seifbarghy & Aida Mansouri, 2016. "Modelling and solving a congested facility location problem considering systems' and customers' objectives," International Journal of Industrial and Systems Engineering, Inderscience Enterprises Ltd, vol. 22(3), pages 281-304.
    16. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Silva, Allyson & Aloise, Daniel & Coelho, Leandro C. & Rocha, Caroline, 2021. "Heuristics for the dynamic facility location problem with modular capacities," European Journal of Operational Research, Elsevier, vol. 290(2), pages 435-452.
    2. Tang, Lianhua & Li, Yantong & Bai, Danyu & Liu, Tao & Coelho, Leandro C., 2022. "Bi-objective optimization for a multi-period COVID-19 vaccination planning problem," Omega, Elsevier, vol. 110(C).
    3. Antunes, Antonio & Peeters, Dominique, 2000. "A dynamic optimization model for school network planning," Socio-Economic Planning Sciences, Elsevier, vol. 34(2), pages 101-120, June.
    4. Antunes, Antonio & Peeters, Dominique, 2001. "On solving complex multi-period location models using simulated annealing," European Journal of Operational Research, Elsevier, vol. 130(1), pages 190-201, April.
    5. Sanjay Dominik Jena & Jean-François Cordeau & Bernard Gendron, 2015. "Dynamic Facility Location with Generalized Modular Capacities," Transportation Science, INFORMS, vol. 49(3), pages 484-499, August.
    6. Guerriero, Francesca & Miglionico, Giovanna & Olivito, Filomena, 2016. "Location and reorganization problems: The Calabrian health care system case," European Journal of Operational Research, Elsevier, vol. 250(3), pages 939-954.
    7. Lei, Chao & Lin, Wei-Hua & Miao, Lixin, 2014. "A multicut L-shaped based algorithm to solve a stochastic programming model for the mobile facility routing and scheduling problem," European Journal of Operational Research, Elsevier, vol. 238(3), pages 699-710.
    8. Avella, P. & Benati, S. & Canovas Martinez, L. & Dalby, K. & Di Girolamo, D. & Dimitrijevic, B. & Ghiani, G. & Giannikos, I. & Guttmann, N. & Hultberg, T. H. & Fliege, J. & Marin, A. & Munoz Marquez, , 1998. "Some personal views on the current state and the future of locational analysis," European Journal of Operational Research, Elsevier, vol. 104(2), pages 269-287, January.
    9. Eric Delmelle & Jean-Claude Thill & Dominique Peeters & Isabelle Thomas, 2014. "A multi-period capacitated school location problem with modular equipment and closest assignment considerations," Journal of Geographical Systems, Springer, vol. 16(3), pages 263-286, July.
    10. Drexl, Andreas & Klose, Andreas, 2001. "Facility location models for distribution system design," Manuskripte aus den Instituten für Betriebswirtschaftslehre der Universität Kiel 546, Christian-Albrechts-Universität zu Kiel, Institut für Betriebswirtschaftslehre.
    11. Güden, Hüseyin & Süral, Haldun, 2014. "Locating mobile facilities in railway construction management," Omega, Elsevier, vol. 45(C), pages 71-79.
    12. James Luedtke & George L. Nemhauser, 2009. "Strategic Planning with Start-Time Dependent Variable Costs," Operations Research, INFORMS, vol. 57(5), pages 1250-1261, October.
    13. Ali Ekici & Pınar Keskinocak & Julie L. Swann, 2014. "Modeling Influenza Pandemic and Planning Food Distribution," Manufacturing & Service Operations Management, INFORMS, vol. 16(1), pages 11-27, February.
    14. António Antunes & Oded Berman & João Bigotte & Dmitry Krass, 2009. "A Location Model for Urban Hierarchy Planning with Population Dynamics," Environment and Planning A, , vol. 41(4), pages 996-1016, April.
    15. Klose, Andreas & Drexl, Andreas, 2005. "Facility location models for distribution system design," European Journal of Operational Research, Elsevier, vol. 162(1), pages 4-29, April.
    16. Allman, Andrew & Zhang, Qi, 2020. "Dynamic location of modular manufacturing facilities with relocation of individual modules," European Journal of Operational Research, Elsevier, vol. 286(2), pages 494-507.
    17. Clavijo López, Christian & Crama, Yves & Pironet, Thierry & Semet, Frédéric, 2024. "Multi-period distribution networks with purchase commitment contracts," European Journal of Operational Research, Elsevier, vol. 312(2), pages 556-572.
    18. Ariane Kayser & Florian Sahling, 2023. "Relocatable modular capacities in risk aware strategic supply network planning under demand uncertainty," Schmalenbach Journal of Business Research, Springer, vol. 75(1), pages 1-35, March.
    19. Russell Halper & S. Raghavan, 2011. "The Mobile Facility Routing Problem," Transportation Science, INFORMS, vol. 45(3), pages 413-434, August.
    20. Alberto Ceselli & Federico Liberatore & Giovanni Righini, 2009. "A computational evaluation of a general branch-and-price framework for capacitated network location problems," Annals of Operations Research, Springer, vol. 167(1), pages 209-251, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:84:y:2022:i:c:s0038012122001902. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.