IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v75y2021ics0038012119304793.html
   My bibliography  Save this article

Soil texture prediction via reduced K-means Principal Component Multinomial Regression

Author

Listed:
  • Lucadamo, Antonio
  • Amenta, Pietro
  • Leone, Natalia

Abstract

Texture is one of the most important physical property of the soils for its influence on other fundamental properties. It is defined according to particle size distribution, that can be accurately measured in laboratory. However, these measurements are costly and very time consuming, therefore valid alternatives are necessary. In last years some statistical techniques have been used to predict textural classification using values of reflectance spectrometry as explicative variables. The estimation of the model parameters can be not too accurate, affecting prediction when there is multicollinearity among predictors. Another issue can be the great number of explicative variables usually necessary to explain the response. In order to improve the accuracy of the prediction in classification problems under multicollinearity and to reduce the dimension of the problem with continuous covariates, in this paper we introduce a new technique, based on classification and dimension reduction methods. We show how the new proposal can improve the accuracy of prediction, considering a problem concerning the textural classification of soils of Campania region.

Suggested Citation

  • Lucadamo, Antonio & Amenta, Pietro & Leone, Natalia, 2021. "Soil texture prediction via reduced K-means Principal Component Multinomial Regression," Socio-Economic Planning Sciences, Elsevier, vol. 75(C).
  • Handle: RePEc:eee:soceps:v:75:y:2021:i:c:s0038012119304793
    DOI: 10.1016/j.seps.2020.100871
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038012119304793
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.seps.2020.100871?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    2. Vichi, Maurizio & Kiers, Henk A. L., 2001. "Factorial k-means analysis for two-way data," Computational Statistics & Data Analysis, Elsevier, vol. 37(1), pages 49-64, July.
    3. Charrad, Malika & Ghazzali, Nadia & Boiteau, Véronique & Niknafs, Azam, 2014. "NbClust: An R Package for Determining the Relevant Number of Clusters in a Data Set," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 61(i06).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. José Fernando Romero Cañizares & Purificación Vicente Galindo & Yannis Phillis & Evangelos Grigoroudis, 2022. "Graphical sustainability analysis using disjoint biplots," Operational Research, Springer, vol. 22(2), pages 1575-1596, April.
    2. Monia Ranalli & Roberto Rocci, 2017. "A Model-Based Approach to Simultaneous Clustering and Dimensional Reduction of Ordinal Data," Psychometrika, Springer;The Psychometric Society, vol. 82(4), pages 1007-1034, December.
    3. Igor Kravchuk & Viktoriia Stoika, 2021. "Business Μodels of Βanks for the Financial Markets in the EU," European Research Studies Journal, European Research Studies Journal, vol. 0(2B), pages 371-382.
    4. Masaki Mitsuhiro & Hiroshi Yadohisa, 2015. "Reduced $$k$$ k -means clustering with MCA in a low-dimensional space," Computational Statistics, Springer, vol. 30(2), pages 463-475, June.
    5. Cristina Tortora & Paul D. McNicholas & Ryan P. Browne, 2016. "A mixture of generalized hyperbolic factor analyzers," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 423-440, December.
    6. Cristina Tortora & Mireille Gettler Summa & Marina Marino & Francesco Palumbo, 2016. "Factor probabilistic distance clustering (FPDC): a new clustering method," Advances in Data Analysis and Classification, Springer;German Classification Society - Gesellschaft für Klassifikation (GfKl);Japanese Classification Society (JCS);Classification and Data Analysis Group of the Italian Statistical Society (CLADAG);International Federation of Classification Societies (IFCS), vol. 10(4), pages 441-464, December.
    7. Kensuke Tanioka & Hiroshi Yadohisa, 2019. "Simultaneous Method of Orthogonal Non-metric Non-negative Matrix Factorization and Constrained Non-hierarchical Clustering," Journal of Classification, Springer;The Classification Society, vol. 36(1), pages 73-93, April.
    8. Luca Greco & Antonio Lucadamo & Pietro Amenta, 2020. "An Impartial Trimming Approach for Joint Dimension and Sample Reduction," Journal of Classification, Springer;The Classification Society, vol. 37(3), pages 769-788, October.
    9. Bolívar, Fernando & Duran, Miguel A. & Lozano-Vivas, Ana, 2023. "Bank business models, size, and profitability," Finance Research Letters, Elsevier, vol. 53(C).
    10. Alfonso Iodice D’Enza & Francesco Palumbo, 2013. "Iterative factor clustering of binary data," Computational Statistics, Springer, vol. 28(2), pages 789-807, April.
    11. Roopam Shukla & Ankit Agarwal & Kamna Sachdeva & Juergen Kurths & P. K. Joshi, 2019. "Climate change perception: an analysis of climate change and risk perceptions among farmer types of Indian Western Himalayas," Climatic Change, Springer, vol. 152(1), pages 103-119, January.
    12. Saemi Shin & Won Suck Yoon & Sang-Hoon Byeon, 2022. "Trends in Occupational Infectious Diseases in South Korea and Classification of Industries According to the Risk of Biological Hazards Using K-Means Clustering," IJERPH, MDPI, vol. 19(19), pages 1-19, September.
    13. DeSarbo, Wayne S. & Selin Atalay, A. & Blanchard, Simon J., 2009. "A three-way clusterwise multidimensional unfolding procedure for the spatial representation of context dependent preferences," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3217-3230, June.
    14. Jihane El Ouadi & Hanae Errousso & Nicolas Malhene & Siham Benhadou & Hicham Medromi, 2022. "A machine-learning based hybrid algorithm for strategic location of urban bundling hubs to support shared public transport," Quality & Quantity: International Journal of Methodology, Springer, vol. 56(5), pages 3215-3258, October.
    15. Roberto Rocci & Stefano Gattone & Maurizio Vichi, 2011. "A New Dimension Reduction Method: Factor Discriminant K-means," Journal of Classification, Springer;The Classification Society, vol. 28(2), pages 210-226, July.
    16. Kreitmair, Ursula & Bower-Bir, Jacob, 2021. "Too different to solve climate change? Experimental evidence on the effects of production and benefit heterogeneity on collective action," Ecological Economics, Elsevier, vol. 184(C).
    17. Getaneh Addis Tessema & Jan van der Borg & Anton Van Rompaey & Steven Van Passel & Enyew Adgo & Amare Sewnet Minale & Kerebih Asrese & Amaury Frankl & Jean Poesen, 2022. "Benefit Segmentation of Tourists to Geosites and Its Implications for Sustainable Development of Geotourism in the Southern Lake Tana Region, Ethiopia," Sustainability, MDPI, vol. 14(6), pages 1-25, March.
    18. Wu, Tong & Rocha, Juan C. & Berry, Kevin & Chaigneau, Tomas & Hamann, Maike & Lindkvist, Emilie & Qiu, Jiangxiao & Schill, Caroline & Shepon, Alon & Crépin, Anne-Sophie & Folke, Carl, 2024. "Triple Bottom Line or Trilemma? Global Tradeoffs Between Prosperity, Inequality, and the Environment," World Development, Elsevier, vol. 178(C).
    19. Vichi, Maurizio & Saporta, Gilbert, 2009. "Clustering and disjoint principal component analysis," Computational Statistics & Data Analysis, Elsevier, vol. 53(8), pages 3194-3208, June.
    20. Turati, Pietro & Pedroni, Nicola & Zio, Enrico, 2017. "Simulation-based exploration of high-dimensional system models for identifying unexpected events," Reliability Engineering and System Safety, Elsevier, vol. 165(C), pages 317-330.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:75:y:2021:i:c:s0038012119304793. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.