IDEAS home Printed from https://ideas.repec.org/a/eee/soceps/v42y2008i4p221-246.html
   My bibliography  Save this article

A new perspective on the competitiveness of nations

Author

Listed:
  • Önsel, Sule
  • Ülengin, Füsun
  • Ulusoy, Gündüz
  • Aktas, Emel
  • Kabak, Özgür
  • Topcu, Y. Ilker

Abstract

The capability of firms to survive and to have a competitive advantage in global markets depends on, amongst other things, the efficiency of public institutions, the excellence of educational, health and communications infrastructures, as well as on the political and economic stability of their home country. The measurement of competitiveness and strategy development is thus an important issue for policy-makers. Despite many attempts to provide objectivity in the development of measures of national competitiveness, there are inherently subjective judgments that involve, for example, how data sets are aggregated and importance weights are applied. Generally, either equal weighting is assumed in calculating a final index, or subjective weights are specified. The same problem also occurs in the subjective assignment of countries to different clusters. Developed as such, the value of these type indices may be questioned by users. The aim of this paper is to explore methodological transparency as a viable solution to problems created by existing aggregated indices. For this purpose, a methodology composed of three steps is proposed. To start, a hierarchical clustering analysis is used to assign countries to appropriate clusters. In current methods, country clustering is generally based on GDP. However, we suggest that GDP alone is insufficient for purposes of country clustering. In the proposed methodology, 178 criteria are used for this purpose. Next, relationships between the criteria and classification of the countries are determined using artificial neural networks (ANNs). ANN provides an objective method for determining the attribute/criteria weights, which are, for the most part, subjectively specified in existing methods. Finally, in our third step, the countries of interest are ranked based on weights generated in the previous step. Beyond the ranking of countries, the proposed methodology can also be used to identify those attributes that a given country should focus on in order to improve its position relative to other countries, i.e., to transition from its current cluster to the next higher one.

Suggested Citation

  • Önsel, Sule & Ülengin, Füsun & Ulusoy, Gündüz & Aktas, Emel & Kabak, Özgür & Topcu, Y. Ilker, 2008. "A new perspective on the competitiveness of nations," Socio-Economic Planning Sciences, Elsevier, vol. 42(4), pages 221-246, December.
  • Handle: RePEc:eee:soceps:v:42:y:2008:i:4:p:221-246
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0038-0121(08)00002-5
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Oral, Muhittin & Cinar, Unver & Chabchoub, Habib, 1999. "Linking industrial competitiveness and productivity at the firm level," European Journal of Operational Research, Elsevier, vol. 118(2), pages 271-277, October.
    2. Oral, Muhittin & Kettani, Ossama & Cosset, Jean-Claude & Daouas, Mohamed, 1992. "An estimation model for country risk rating," International Journal of Forecasting, Elsevier, vol. 8(4), pages 583-593, December.
    3. Zanakis, Stelios H. & Becerra-Fernandez, Irma, 2005. "Competitiveness of nations: A knowledge discovery examination," European Journal of Operational Research, Elsevier, vol. 166(1), pages 185-211, October.
    4. Nour, Mohamed A. & Madey, Gregory R., 1996. "Heuristic and optimization approaches to extending the Kohonen self organizing algorithm," European Journal of Operational Research, Elsevier, vol. 93(2), pages 428-448, September.
    5. Ulengin, Fusun & Ulengin, Burc & Onsel, Sule, 2002. "A power-based measurement approach to specify macroeconomic competitiveness of countries," Socio-Economic Planning Sciences, Elsevier, vol. 36(3), pages 203-226, September.
    6. Hruschka, Harald, 1993. "Determining market response functions by neural network modeling: A comparison to econometric techniques," European Journal of Operational Research, Elsevier, vol. 66(1), pages 27-35, April.
    7. Oral, Muhittin & Chabchoub, Habib, 1996. "On the methodology of the World Competitiveness Report," European Journal of Operational Research, Elsevier, vol. 90(3), pages 514-535, May.
    8. Oral, Muhittin & Chabchoub, Habib, 1997. "An estimation model for replicating the rankings of the world competitiveness report," International Journal of Forecasting, Elsevier, vol. 13(4), pages 527-537, December.
    9. Swanson, Norman R. & White, Halbert, 1997. "Forecasting economic time series using flexible versus fixed specification and linear versus nonlinear econometric models," International Journal of Forecasting, Elsevier, vol. 13(4), pages 439-461, December.
    10. Oral, Muhittin, 1993. "A methodology for competitiveness analysis and strategy formulation in glass industry," European Journal of Operational Research, Elsevier, vol. 68(1), pages 9-22, July.
    11. Hwarng, H. Brian & Ang, H. T., 2001. "A simple neural network for ARMA(p,q) time series," Omega, Elsevier, vol. 29(4), pages 319-333, August.
    12. Glenn Milligan, 1980. "An examination of the effect of six types of error perturbation on fifteen clustering algorithms," Psychometrika, Springer;The Psychometric Society, vol. 45(3), pages 325-342, September.
    13. Li, Yuan & Deng, Shengliang, 1999. "A methodology for competitive advantage analysis and strategy formulation: An example in a transitional economy," European Journal of Operational Research, Elsevier, vol. 118(2), pages 259-270, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Alathur, Sreejith & Vigneswara Ilavarasan, P. & Gupta, M.P., 2016. "Determinants of e-participation in the citizens and the government initiatives: Insights from India," Socio-Economic Planning Sciences, Elsevier, vol. 55(C), pages 25-35.
    2. María-Dolores Benítez-Márquez & Eva M Sánchez-Teba & Isabel Coronado-Maldonado, 2022. "An alternative index to the global competitiveness index," PLOS ONE, Public Library of Science, vol. 17(3), pages 1-19, March.
    3. Olivera Kostoska & Ilija Hristoski, 2017. "ICTs and innovation for competitiveness: Evidence for Western Balkans vis-?-vis the European Union," Zbornik radova Ekonomskog fakulteta u Rijeci/Proceedings of Rijeka Faculty of Economics, University of Rijeka, Faculty of Economics and Business, vol. 35(2), pages 487-518.
    4. Bazilian, Morgan & Onyeji, Ijeoma, 2012. "Fossil fuel subsidy removal and inadequate public power supply: Implications for businesses," Energy Policy, Elsevier, vol. 45(C), pages 1-5.
    5. Idris, Zera Zuryana & Ismail, Normaz Wana & Ibrahim, Saifuzzaman & Hamzah, Hanny Zurina, 2021. "High-Technology Trade: Does it Enhance National Competitiveness?," Jurnal Ekonomi Malaysia, Faculty of Economics and Business, Universiti Kebangsaan Malaysia, vol. 55(3), pages 35-48.
    6. Mashabela, Juliet & Raputsoane, Leroi, 2018. "Important factors in a nations international competitiveness ranking," MPRA Paper 86477, University Library of Munich, Germany.
    7. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    8. Vincent Charles & Guillermo Díaz, 2017. "A Non-radial DEA Index for Peruvian Regional Competitiveness," Social Indicators Research: An International and Interdisciplinary Journal for Quality-of-Life Measurement, Springer, vol. 134(2), pages 747-770, November.
    9. Salas-Velasco, Manuel, 2018. "Production efficiency measurement and its determinants across OECD countries: The role of business sophistication and innovation," Economic Analysis and Policy, Elsevier, vol. 57(C), pages 60-73.
    10. Irina-Elena Gentimir, 2013. "The Role Of The Private Sector In Developing And Supporting International Competitiveness," CES Working Papers, Centre for European Studies, Alexandru Ioan Cuza University, vol. 5(2), pages 205-215.
    11. Natalia Mańkowska, 2016. "Metody pomiaru e-administracji w kontekście konkurencyjności międzynarodowej / Methods of measurement e-government in the context of international competitiveness," International Economics, University of Lodz, Faculty of Economics and Sociology, issue 14, pages 158-168, June.
    12. Joanicjusz Nazarko & Marta Komuda & Katarzyna Kuźmicz & Elżbieta Szubzda & Joanna Urban, 2008. "The DEA method in public sector institutions efficiency analysis on the basis of higher education institutions," Operations Research and Decisions, Wroclaw University of Science and Technology, Faculty of Management, vol. 18(4), pages 89-105.
    13. Pal, Debdatta & Mitra, Subrata K. & Chatterjee, Somdeep, 2022. "Does “investment climate” affect GDP? Panel data evidence using reduced-form and stochastic frontier analysis," Journal of Business Research, Elsevier, vol. 138(C), pages 301-310.
    14. Baiba Å AVRI?A & Santa SPRO?E-RIMÅ A, 2014. "Role Of Science In Enhancing National Competitiveness: Case Of Latvia," Proceedings of the INTERNATIONAL MANAGEMENT CONFERENCE, Faculty of Management, Academy of Economic Studies, Bucharest, Romania, vol. 8(1), pages 564-576, November.
    15. Konara, Palitha, 2020. "The role of language connectedness in reducing home bias in trade, investment, information, and people flows," Research in International Business and Finance, Elsevier, vol. 52(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ülengin, Füsun & Kabak, Özgür & Önsel, Sule & Aktas, Emel & Parker, Barnett R., 2011. "The competitiveness of nations and implications for human development," Socio-Economic Planning Sciences, Elsevier, vol. 45(1), pages 16-27, March.
    2. Zanakis, Stelios H. & Becerra-Fernandez, Irma, 2005. "Competitiveness of nations: A knowledge discovery examination," European Journal of Operational Research, Elsevier, vol. 166(1), pages 185-211, October.
    3. Onsel Sahin, Sule & Ulengin, Fusun & Ulengin, Burc, 2004. "Using neural networks and cognitive mapping in scenario analysis: The case of Turkey's inflation dynamics," European Journal of Operational Research, Elsevier, vol. 158(1), pages 124-145, October.
    4. Oral, Muhittin, 2010. "E-DEA: Enhanced data envelopment analysis," European Journal of Operational Research, Elsevier, vol. 207(2), pages 916-926, December.
    5. Ülengin, Füsun & Önsel, Sule & Ilker Topçu, Y. & Aktas, Emel & Kabak, Özgür, 2007. "An integrated transportation decision support system for transportation policy decisions: The case of Turkey," Transportation Research Part A: Policy and Practice, Elsevier, vol. 41(1), pages 80-97, January.
    6. Önsel Ekici, Şule & Kabak, Özgür & Ülengin, Füsun, 2016. "Linking to compete: Logistics and global competitiveness interaction," Transport Policy, Elsevier, vol. 48(C), pages 117-128.
    7. Ülengin, Füsun & Önsel, Şule & Aktas, Emel & Kabak, Özgür & Özaydın, Özay, 2014. "A decision support methodology to enhance the competitiveness of the Turkish automotive industry," European Journal of Operational Research, Elsevier, vol. 234(3), pages 789-801.
    8. Yuan Li & Xiuwu Liao & Wenhong Zhao, 2009. "A rough set approach to knowledge discovery in analyzing competitive advantages of firms," Annals of Operations Research, Springer, vol. 168(1), pages 205-223, April.
    9. Qi, Min & Yang, Sha, 2003. "Forecasting consumer credit card adoption: what can we learn about the utility function?," International Journal of Forecasting, Elsevier, vol. 19(1), pages 71-85.
    10. Oral, Muhittin & Chabchoub, Habib, 1997. "An estimation model for replicating the rankings of the world competitiveness report," International Journal of Forecasting, Elsevier, vol. 13(4), pages 527-537, December.
    11. Ulengin, Fusun & Ulengin, Burc & Onsel, Sule, 2002. "A power-based measurement approach to specify macroeconomic competitiveness of countries," Socio-Economic Planning Sciences, Elsevier, vol. 36(3), pages 203-226, September.
    12. Hendry, David F. & Clements, Michael P., 2003. "Economic forecasting: some lessons from recent research," Economic Modelling, Elsevier, vol. 20(2), pages 301-329, March.
    13. Chen, Qitong & Hong, Yongmiao & Li, Haiqi, 2024. "Time-varying forecast combination for factor-augmented regressions with smooth structural changes," Journal of Econometrics, Elsevier, vol. 240(1).
    14. Kim, Junyung & Shah, Asad Ullah Amin & Kang, Hyun Gook, 2020. "Dynamic risk assessment with bayesian network and clustering analysis," Reliability Engineering and System Safety, Elsevier, vol. 201(C).
    15. Ali Abdelzadeh, 2014. "The Impact of Political Conviction on the Relation Between Winning or Losing and Political Dissatisfaction," SAGE Open, , vol. 4(2), pages 21582440145, May.
    16. Bordt, Michael, 2018. "Discourses in Ecosystem Accounting: A Survey of the Expert Community," Ecological Economics, Elsevier, vol. 144(C), pages 82-99.
    17. Ana-Maria Fuertes & Elena Kalotychou, 2004. "Forecasting sovereign default using panel models: A comparative analysis," Computing in Economics and Finance 2004 228, Society for Computational Economics.
    18. Lahiri, Kajal & Yang, Liu, 2013. "Forecasting Binary Outcomes," Handbook of Economic Forecasting, in: G. Elliott & C. Granger & A. Timmermann (ed.), Handbook of Economic Forecasting, edition 1, volume 2, chapter 0, pages 1025-1106, Elsevier.
    19. Balepur, Prashant Narayan, 1998. "Impacts of Computer-Mediated Communication on Travel and Communication Patterns: The Davis Community Network Study," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt6cb1f85c, Institute of Transportation Studies, UC Berkeley.
    20. Szafranek, Karol, 2019. "Bagged neural networks for forecasting Polish (low) inflation," International Journal of Forecasting, Elsevier, vol. 35(3), pages 1042-1059.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:soceps:v:42:y:2008:i:4:p:221-246. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/seps .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.