IDEAS home Printed from https://ideas.repec.org/a/eee/riibaf/v50y2019icp54-69.html
   My bibliography  Save this article

Time-frequency analysis of behaviourally classified financial asset markets

Author

Listed:
  • Omane-Adjepong, Maurice
  • Ababio, Kofi Agyarko
  • Alagidede, Imhotep Paul

Abstract

The paper examines market co-movement between pairs of international assets in the time and frequency spectrum. Using the cumulative prospect theory (CPT), twenty-one cryptocurrencies are classified into high and low assets, with three assets from each class making it into the final sample. We included in our analysis four major global equities. The empirical results indicate a highly connected market for the classified cryptocurrency pairs. Moreover, we found evidence of market differences to be much pronounced as global equities weakly co-move with the cryptocurrency markets. For the undiversified portfolio profitability analysis, the equities, particularly S&P500 unanimously outperformed the cryptocurrencies across all trading scales; whereas portfolio returns produced by PIVX emerged winner under the aggregate return series. Furthermore, the inclusion of CPT classified cryptocurrencies to diversified portfolios constituting international equities significantly affected the portfolio risk-return dynamics positively. Our findings provide intuitive and coherent investment strategies aimed at guiding investors with different market aspirations and risk-return appetite.

Suggested Citation

  • Omane-Adjepong, Maurice & Ababio, Kofi Agyarko & Alagidede, Imhotep Paul, 2019. "Time-frequency analysis of behaviourally classified financial asset markets," Research in International Business and Finance, Elsevier, vol. 50(C), pages 54-69.
  • Handle: RePEc:eee:riibaf:v:50:y:2019:i:c:p:54-69
    DOI: 10.1016/j.ribaf.2019.04.012
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S027553191830847X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.ribaf.2019.04.012?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Marc Rieger & Mei Wang, 2006. "Cumulative prospect theory and the St. Petersburg paradox," Economic Theory, Springer;Society for the Advancement of Economic Theory (SAET), vol. 28(3), pages 665-679, August.
    2. Zakamouline, Valeri & Koekebakker, Steen, 2009. "Portfolio performance evaluation with generalized Sharpe ratios: Beyond the mean and variance," Journal of Banking & Finance, Elsevier, vol. 33(7), pages 1242-1254, July.
    3. Caporale, Guglielmo Maria & Gil-Alana, Luis & Plastun, Alex, 2018. "Persistence in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 46(C), pages 141-148.
    4. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
    5. Jacobs, Heiko & Müller, Sebastian & Weber, Martin, 2014. "How should individual investors diversify? An empirical evaluation of alternative asset allocation policies," Journal of Financial Markets, Elsevier, vol. 19(C), pages 62-85.
    6. Harry Markowitz, 1952. "Portfolio Selection," Journal of Finance, American Finance Association, vol. 7(1), pages 77-91, March.
    7. Francis, Bill B. & Hasan, Iftekhar & Sun, Xian, 2008. "Financial market integration and the value of global diversification: Evidence for US acquirers in cross-border mergers and acquisitions," Journal of Banking & Finance, Elsevier, vol. 32(8), pages 1522-1540, August.
    8. Daniel Kahneman & Amos Tversky, 2013. "Prospect Theory: An Analysis of Decision Under Risk," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 6, pages 99-127, World Scientific Publishing Co. Pte. Ltd..
    9. Ji, Qiang & Bouri, Elie & Gupta, Rangan & Roubaud, David, 2018. "Network causality structures among Bitcoin and other financial assets: A directed acyclic graph approach," The Quarterly Review of Economics and Finance, Elsevier, vol. 70(C), pages 203-213.
    10. Bai, Ye & Green, Christopher J., 2010. "International diversification strategies: Revisited from the risk perspective," Journal of Banking & Finance, Elsevier, vol. 34(1), pages 236-245, January.
    11. Kelly, Morgan, 1995. "All their eggs in one basket: Portfolio diversification of US households," Journal of Economic Behavior & Organization, Elsevier, vol. 27(1), pages 87-96, June.
    12. Neil Gandal & Hanna Halaburda, 2016. "Can We Predict the Winner in a Market with Network Effects? Competition in Cryptocurrency Market," Games, MDPI, vol. 7(3), pages 1-21, July.
    13. Tversky, Amos & Kahneman, Daniel, 1992. "Advances in Prospect Theory: Cumulative Representation of Uncertainty," Journal of Risk and Uncertainty, Springer, vol. 5(4), pages 297-323, October.
    14. Panagiotidis, Theodore & Stengos, Thanasis & Vravosinos, Orestis, 2019. "The effects of markets, uncertainty and search intensity on bitcoin returns," International Review of Financial Analysis, Elsevier, vol. 63(C), pages 220-242.
    15. Ftiti, Zied & Guesmi, Khaled & Abid, Ilyes, 2016. "Oil price and stock market co-movement: What can we learn from time-scale approaches?," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 266-280.
    16. Chandar, Nandini & Patro, Dilip K. & Yezegel, Ari, 2009. "Crises, contagion and cross-listings," Journal of Banking & Finance, Elsevier, vol. 33(9), pages 1709-1729, September.
    17. Gregoriou, Greg N., 2006. "Funds of Hedge Funds," Elsevier Monographs, Elsevier, edition 1, number 9780750679848.
    18. Quiggin, John, 1982. "A theory of anticipated utility," Journal of Economic Behavior & Organization, Elsevier, vol. 3(4), pages 323-343, December.
    19. Elie Bouri & Mahamitra Das & Rangan Gupta & David Roubaud, 2018. "Spillovers between Bitcoin and other assets during bear and bull markets," Applied Economics, Taylor & Francis Journals, vol. 50(55), pages 5935-5949, November.
    20. Rua, António & Nunes, Luís C., 2009. "International comovement of stock market returns: A wavelet analysis," Journal of Empirical Finance, Elsevier, vol. 16(4), pages 632-639, September.
    21. Blume, Marshall E & Friend, Irwin, 1975. "The Asset Structure of Individual Portfolios and Some Implications for Utility Functions," Journal of Finance, American Finance Association, vol. 30(2), pages 585-603, May.
    22. Antonio E. Bernardo & Olivier Ledoit, 2000. "Gain, Loss, and Asset Pricing," Journal of Political Economy, University of Chicago Press, vol. 108(1), pages 144-172, February.
    23. Beatrice D. Simo-Kengne & Kofi A. Ababio & Jules Mba & Ur Koumba, 2018. "Behavioral portfolio selection and optimization: an application to international stocks," Financial Markets and Portfolio Management, Springer;Swiss Society for Financial Market Research, vol. 32(3), pages 311-328, August.
    24. Bouri, Elie & Molnár, Peter & Azzi, Georges & Roubaud, David & Hagfors, Lars Ivar, 2017. "On the hedge and safe haven properties of Bitcoin: Is it really more than a diversifier?," Finance Research Letters, Elsevier, vol. 20(C), pages 192-198.
    25. Abeer ElBahrawy & Laura Alessandretti & Anne Kandler & Romualdo Pastor-Satorras & Andrea Baronchelli, 2017. "Evolutionary dynamics of the cryptocurrency market," Papers 1705.05334, arXiv.org, revised Nov 2017.
    26. Colin Camerer, 1998. "Bounded Rationality in Individual Decision Making," Experimental Economics, Springer;Economic Science Association, vol. 1(2), pages 163-183, September.
    27. Wakker, Peter & Tversky, Amos, 1993. "An Axiomatization of Cumulative Prospect Theory," Journal of Risk and Uncertainty, Springer, vol. 7(2), pages 147-175, October.
    28. Corbet, Shaen & Meegan, Andrew & Larkin, Charles & Lucey, Brian & Yarovaya, Larisa, 2018. "Exploring the dynamic relationships between cryptocurrencies and other financial assets," Economics Letters, Elsevier, vol. 165(C), pages 28-34.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sodokin, Koffi & Djafon, Joseph Kokouvi & Dandonougbo, Yevessé & Akakpo, Afi & Couchoro, Mawuli K. & Agbodji, Akoété Ega, 2023. "Technological change, completeness of financing microstructures, and impact on well-being and income inequality," Telecommunications Policy, Elsevier, vol. 47(6).
    2. Gil-Alana, Luis Alberiko & Abakah, Emmanuel Joel Aikins & Rojo, María Fátima Romero, 2020. "Cryptocurrencies and stock market indices. Are they related?," Research in International Business and Finance, Elsevier, vol. 51(C).
    3. Tran, Vu Le & Leirvik, Thomas, 2020. "Efficiency in the markets of crypto-currencies," Finance Research Letters, Elsevier, vol. 35(C).
    4. Duc Huynh, Toan Luu & Burggraf, Tobias & Wang, Mei, 2020. "Gold, platinum, and expected Bitcoin returns," Journal of Multinational Financial Management, Elsevier, vol. 56(C).
    5. Apergis, Nicholas & Koutmos, Dimitrios & Payne, James E., 2021. "Convergence in cryptocurrency prices? the role of market microstructure," Finance Research Letters, Elsevier, vol. 40(C).
    6. Ivanovski, Kris & Hailemariam, Abebe, 2023. "Forecasting the stock-cryptocurrency relationship: Evidence from a dynamic GAS model," International Review of Economics & Finance, Elsevier, vol. 86(C), pages 97-111.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Jakusch, Sven Thorsten, 2017. "On the applicability of maximum likelihood methods: From experimental to financial data," SAFE Working Paper Series 148, Leibniz Institute for Financial Research SAFE, revised 2017.
    2. Flori, Andrea, 2019. "News and subjective beliefs: A Bayesian approach to Bitcoin investments," Research in International Business and Finance, Elsevier, vol. 50(C), pages 336-356.
    3. Stephen G Dimmock & Roy Kouwenberg & Olivia S Mitchell & Kim Peijnenburg, 2021. "Household Portfolio Underdiversification and Probability Weighting: Evidence from the Field," The Review of Financial Studies, Society for Financial Studies, vol. 34(9), pages 4524-4563.
    4. Omane-Adjepong, Maurice & Alagidede, Paul & Akosah, Nana Kwame, 2019. "Wavelet time-scale persistence analysis of cryptocurrency market returns and volatility," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 514(C), pages 105-120.
    5. Ko, Hyungjin & Son, Bumho & Lee, Jaewook, 2024. "Portfolio insurance strategy in the cryptocurrency market," Research in International Business and Finance, Elsevier, vol. 67(PA).
    6. Caporin, Massimiliano & Costola, Michele & Jannin, Gregory & Maillet, Bertrand, 2018. "“On the (Ab)use of Omega?”," Journal of Empirical Finance, Elsevier, vol. 46(C), pages 11-33.
    7. Achraf Ghorbel & Wajdi Frikha & Yasmine Snene Manzli, 2022. "Testing for asymmetric non-linear short- and long-run relationships between crypto-currencies and stock markets," Eurasian Economic Review, Springer;Eurasia Business and Economics Society, vol. 12(3), pages 387-425, September.
    8. Chemkha, Rahma & BenSaïda, Ahmed & Ghorbel, Ahmed, 2021. "Connectedness between cryptocurrencies and foreign exchange markets: Implication for risk management," Journal of Multinational Financial Management, Elsevier, vol. 59(C).
    9. Ahmed, Walid M.A., 2020. "Is there a risk-return trade-off in cryptocurrency markets? The case of Bitcoin," Journal of Economics and Business, Elsevier, vol. 108(C).
    10. Marie Pfiffelmann, 2011. "Solving the St. Petersburg Paradox in cumulative prospect theory: the right amount of probability weighting," Theory and Decision, Springer, vol. 71(3), pages 325-341, September.
    11. Elisa Cavezzali & Gloria Gardenal & Ugo Rigoni, 2012. "Risk taking, diversification behavior and financial literacy of individual investors," Working Papers 17, Venice School of Management - Department of Management, Università Ca' Foscari Venezia.
    12. Bernard, Carole & Ghossoub, Mario, 2009. "Static Portfolio Choice under Cumulative Prospect Theory," MPRA Paper 15446, University Library of Munich, Germany.
    13. Trabelsi, Mohamed Ali, 2006. "Les nouveaux modèles de décision dans le risque et l’incertain : quel apport ? [The new models of decision under risk or uncertainty : What approach?]," MPRA Paper 25442, University Library of Munich, Germany.
    14. Andrea Flori, 2019. "Cryptocurrencies In Finance: Review And Applications," International Journal of Theoretical and Applied Finance (IJTAF), World Scientific Publishing Co. Pte. Ltd., vol. 22(05), pages 1-22, August.
    15. Horst Zank, 2010. "On probabilities and loss aversion," Theory and Decision, Springer, vol. 68(3), pages 243-261, March.
    16. Liang Zou, 2006. "An Alternative to Prospect Theory," Annals of Economics and Finance, Society for AEF, vol. 7(1), pages 1-28, May.
    17. Yi, Shuyue & Xu, Zishuang & Wang, Gang-Jin, 2018. "Volatility connectedness in the cryptocurrency market: Is Bitcoin a dominant cryptocurrency?," International Review of Financial Analysis, Elsevier, vol. 60(C), pages 98-114.
    18. Bedi, Prateek & Nashier, Tripti, 2020. "On the investment credentials of Bitcoin: A cross-currency perspective," Research in International Business and Finance, Elsevier, vol. 51(C).
    19. Moshe Levy & Haim Levy, 2013. "Prospect Theory: Much Ado About Nothing?," World Scientific Book Chapters, in: Leonard C MacLean & William T Ziemba (ed.), HANDBOOK OF THE FUNDAMENTALS OF FINANCIAL DECISION MAKING Part I, chapter 7, pages 129-144, World Scientific Publishing Co. Pte. Ltd..
    20. Bocqueho, Geraldine & Jacquet, Florence & Reynaud, Arnaud, 2011. "Expected Utility or Prospect Theory Maximizers? Results from a Structural Model based on Field-experiment Data," 2011 International Congress, August 30-September 2, 2011, Zurich, Switzerland 114257, European Association of Agricultural Economists.

    More about this item

    Keywords

    Cryptocurrencies; Equities; Wavelet coherence; Co-movement; Cumulative Prospect theory; Portfolio diversification;
    All these keywords.

    JEL classification:

    • C22 - Mathematical and Quantitative Methods - - Single Equation Models; Single Variables - - - Time-Series Models; Dynamic Quantile Regressions; Dynamic Treatment Effect Models; Diffusion Processes
    • F21 - International Economics - - International Factor Movements and International Business - - - International Investment; Long-Term Capital Movements
    • G1 - Financial Economics - - General Financial Markets
    • G32 - Financial Economics - - Corporate Finance and Governance - - - Financing Policy; Financial Risk and Risk Management; Capital and Ownership Structure; Value of Firms; Goodwill

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:riibaf:v:50:y:2019:i:c:p:54-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/ribaf .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.