IDEAS home Printed from https://ideas.repec.org/a/eee/reveco/v89y2024ipbp913-939.html
   My bibliography  Save this article

Sentiment analysis of the Spanish financial stability Report

Author

Listed:
  • Moreno Bernal, Ángel Iván
  • Pedraz, Carlos González

Abstract

This paper presents a text mining application, to extract information from financial texts and use this information to create sentiment indices. In particular, the analysis focuses on the Banco de España's Financial Stability Reports from 2002 to 2019 in their Spanish version and on the press reaction to these reports. To calculate the indices, a Spanish dictionary of words with a positive, negative or neutral connotation has been created, to the best of our knowledge the first within the context of financial stability. The robustness of the indices is analysed by applying them to different sections of the Report, and using different variations of the dictionary and the definition of the index. Finally, sentiment is also measured for press reports in the days following the publication of the Report. The results show that the list of words collected in the reference dictionary represents a robust sample to estimate the sentiment of these texts. This tool constitutes a valuable methodology to analyse the repercussion of financial stability reports, while objectively quantifying the sentiment conveyed in them.

Suggested Citation

  • Moreno Bernal, Ángel Iván & Pedraz, Carlos González, 2024. "Sentiment analysis of the Spanish financial stability Report," International Review of Economics & Finance, Elsevier, vol. 89(PB), pages 913-939.
  • Handle: RePEc:eee:reveco:v:89:y:2024:i:pb:p:913-939
    DOI: 10.1016/j.iref.2023.10.037
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1059056023004070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.iref.2023.10.037?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Nicholas Apergis & Ioannis Pragidis, 2019. "Stock Price Reactions to Wire News from the European Central Bank: Evidence from Changes in the Sentiment Tone and International Market Indexes," International Advances in Economic Research, Springer;International Atlantic Economic Society, vol. 25(1), pages 91-112, February.
    2. Kearney, Colm & Liu, Sha, 2014. "Textual sentiment in finance: A survey of methods and models," International Review of Financial Analysis, Elsevier, vol. 33(C), pages 171-185.
    3. Benjamin Born & Michael Ehrmann & Marcel Fratzscher, 2014. "Central Bank Communication on Financial Stability," Economic Journal, Royal Economic Society, vol. 124(577), pages 701-734, June.
    4. Paul Mielke & Kenneth Berry & Janis Johnston, 2011. "Robustness without rank order statistics," Journal of Applied Statistics, Taylor & Francis Journals, vol. 38(1), pages 207-214.
    5. Tim Loughran & Bill Mcdonald, 2011. "When Is a Liability Not a Liability? Textual Analysis, Dictionaries, and 10‐Ks," Journal of Finance, American Finance Association, vol. 66(1), pages 35-65, February.
    6. Ricardo Correa & Keshav Garud & Juan M. Londono & Nathan Mislang, 2017. "Constructing a Dictionary for Financial Stability," IFDP Notes 2017-06-28, Board of Governors of the Federal Reserve System (U.S.).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stolbov, Mikhail & Shchepeleva, Maria & Karminsky, Alexander, 2022. "When central bank research meets Google search: A sentiment index of global financial stress," Journal of International Financial Markets, Institutions and Money, Elsevier, vol. 81(C).
    2. Ricardo Correa & Keshav Garud & Juan M Londono & Nathan Mislang, 2021. "Sentiment in Central Banks’ Financial Stability Reports," Review of Finance, European Finance Association, vol. 25(1), pages 85-120.
    3. Nicolò Fraccaroli & Alessandro Giovannini & Jean-François Jamet & Eric Persson, 2023. "Central Banks in Parliaments: A Text Analysis of the Parliamentary Hearings of the Bank of England, the European Central Bank, and the Federal Reserve," International Journal of Central Banking, International Journal of Central Banking, vol. 19(2), pages 543-600, June.
    4. Ángel Iván Moreno Bernal & Carlos González Pedraz, 2020. "Sentiment analysis of the Spanish Financial Stability Report," Working Papers 2011, Banco de España.
    5. Yan Luo & Linying Zhou, 2020. "Textual tone in corporate financial disclosures: a survey of the literature," International Journal of Disclosure and Governance, Palgrave Macmillan, vol. 17(2), pages 101-110, September.
    6. Bennani, Hamza, 2018. "Media coverage and ECB policy-making: Evidence from an augmented Taylor rule," Journal of Macroeconomics, Elsevier, vol. 57(C), pages 26-38.
    7. David Bholat & Stephen Hans & Pedro Santos & Cheryl Schonhardt-Bailey, 2015. "Text mining for central banks," Handbooks, Centre for Central Banking Studies, Bank of England, number 33, April.
    8. Ahmed, Yousry & Elshandidy, Tamer, 2016. "The effect of bidder conservatism on M&A decisions: Text-based evidence from US 10-K filings," International Review of Financial Analysis, Elsevier, vol. 46(C), pages 176-190.
    9. František Dařena & Jan Přichystal, 2018. "Analysis of the Association between Topics in Online Documents and Stock Price Movements," Acta Universitatis Agriculturae et Silviculturae Mendelianae Brunensis, Mendel University Press, vol. 66(6), pages 1431-1439.
    10. Muhammad Farhan Malik & Yuan George Shan & Jamie Yixing Tong, 2022. "Do auditors price litigious tone?," Accounting and Finance, Accounting and Finance Association of Australia and New Zealand, vol. 62(S1), pages 1715-1760, April.
    11. Ahmad, Khurshid & Han, JingGuang & Hutson, Elaine & Kearney, Colm & Liu, Sha, 2016. "Media-expressed negative tone and firm-level stock returns," Journal of Corporate Finance, Elsevier, vol. 37(C), pages 152-172.
    12. Diego F. Téllez & Jesús M. Godoy, 2017. "Mission Power and Firm Financial Performance," Documentos de Trabajo de Valor Público 15655, Universidad EAFIT.
    13. Yuting Chen & Don Bredin & Valerio Potì & Roman Matkovskyy, 2022. "COVID risk narratives: a computational linguistic approach to the econometric identification of narrative risk during a pandemic," Digital Finance, Springer, vol. 4(1), pages 17-61, March.
    14. Ms. Ghada Fayad & Chengyu Huang & Yoko Shibuya & Peng Zhao, 2020. "How Do Member Countries Receive IMF Policy Advice: Results from a State-of-the-art Sentiment Index," IMF Working Papers 2020/007, International Monetary Fund.
    15. Mikael Apel & Marianna Blix Grimaldi & Isaiah Hull, 2022. "How Much Information Do Monetary Policy Committees Disclose? Evidence from the FOMC's Minutes and Transcripts," Journal of Money, Credit and Banking, Blackwell Publishing, vol. 54(5), pages 1459-1490, August.
    16. Youngjoon Lee & Soohyon Kim & Ki Young Park, 2018. "Deciphering Monetary Policy Committee Minutes with Text Mining Approach: A Case of South Korea," Working papers 2018rwp-132, Yonsei University, Yonsei Economics Research Institute.
    17. Kumar, Rahul & Deb, Soumya Guha & Mukherjee, Shubhadeep, 2020. "Do words reveal the latent truth? Identifying communication patterns of corporate losers," Journal of Behavioral and Experimental Finance, Elsevier, vol. 26(C).
    18. Picault, Matthieu & Pinter, Julien & Renault, Thomas, 2022. "Media sentiment on monetary policy: Determinants and relevance for inflation expectations," Journal of International Money and Finance, Elsevier, vol. 124(C).
    19. Renato Camodeca & Alex Almici & Umberto Sagliaschi, 2018. "Sustainability Disclosure in Integrated Reporting: Does It Matter to Investors? A Cheap Talk Approach," Sustainability, MDPI, vol. 10(12), pages 1-34, November.
    20. Vegard Høghaug Larsen & Leif Anders Thorsrud, 2022. "Asset returns, news topics, and media effects," Scandinavian Journal of Economics, Wiley Blackwell, vol. 124(3), pages 838-868, July.

    More about this item

    Keywords

    Text mining; Sentiment analysis; Natural language processing; Central bank communications; Financial stability;
    All these keywords.

    JEL classification:

    • C82 - Mathematical and Quantitative Methods - - Data Collection and Data Estimation Methodology; Computer Programs - - - Methodology for Collecting, Estimating, and Organizing Macroeconomic Data; Data Access
    • G28 - Financial Economics - - Financial Institutions and Services - - - Government Policy and Regulation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:reveco:v:89:y:2024:i:pb:p:913-939. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/inca/620165 .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.