IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v83y2020ics0739885920301025.html
   My bibliography  Save this article

Resurgence of demand responsive transit services – Insights from BRIDJ trials in Inner West of Sydney, Australia

Author

Listed:
  • Perera, Supun
  • Ho, Chinh
  • Hensher, David

Abstract

This paper outlines the key insights gained from the Demand Responsive Transit (DRT) operations in Inner West Sydney, since its commencement in July 2018. In the context of Inner West Sydney, DRT plays the role of a feeder service during the morning and evening peak periods, where commuters use these services to directly access train stations serving high frequency train services. During the inter-peak and off-peak periods, DRT services provide connection and coverage functions by acting like the traditional bus services, to provide stop-to-stop services. Considering the flexibility in the role of DRT, if successfully integrated with the existing public transport network, it can unlock broader fixed route network enhancements through resource reallocation to the key trunk routes. While the patronage for DRT services was found to steadily increase since the commencement of the operations, the key barrier for these services to attract further regular patronage remains the relatively higher fares arising due to the lack of Opal benefits such as mode transfer discounts or weekly caps. Therefore, while DRT has great potential to link those in less connected areas with public transport hubs, thus facilitating a modal shift away from private vehicles, they need to be affordable and well regulated.

Suggested Citation

  • Perera, Supun & Ho, Chinh & Hensher, David, 2020. "Resurgence of demand responsive transit services – Insights from BRIDJ trials in Inner West of Sydney, Australia," Research in Transportation Economics, Elsevier, vol. 83(C).
  • Handle: RePEc:eee:retrec:v:83:y:2020:i:c:s0739885920301025
    DOI: 10.1016/j.retrec.2020.100904
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885920301025
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2020.100904?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hensher, David A., 2017. "Future bus transport contracts under a mobility as a service (MaaS) regime in the digital age: Are they likely to change?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 98(C), pages 86-96.
    2. Davison, Lisa & Enoch, Marcus & Ryley, Tim & Quddus, Mohammed & Wang, Chao, 2014. "A survey of Demand Responsive Transport in Great Britain," Transport Policy, Elsevier, vol. 31(C), pages 47-54.
    3. Palmer, Kurt & Dessouky, Maged & Abdelmaguid, Tamer, 2004. "Impacts of management practices and advanced technologies on demand responsive transit systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 38(7), pages 495-509, August.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sohani Liyanage & Hussein Dia & Rusul Abduljabbar & Saeed Asadi Bagloee, 2019. "Flexible Mobility On-Demand: An Environmental Scan," Sustainability, MDPI, vol. 11(5), pages 1-39, February.
    2. Shibayama, Takeru & Emberger, Günter, 2020. "New mobility services: Taxonomy, innovation and the role of ICTs," Transport Policy, Elsevier, vol. 98(C), pages 79-90.
    3. Qiu, Feng & Shen, Jinxing & Zhang, Xuechi & An, Chengchuan, 2015. "Demi-flexible operating policies to promote the performance of public transit in low-demand areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 80(C), pages 215-230.
    4. Lu, Quan & Dessouky, Maged M., 2006. "A new insertion-based construction heuristic for solving the pickup and delivery problem with time windows," European Journal of Operational Research, Elsevier, vol. 175(2), pages 672-687, December.
    5. Zhang, Jie & Wang, David Z.W. & Meng, Meng, 2018. "Which service is better on a linear travel corridor: Park & ride or on-demand public bus?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 118(C), pages 803-818.
    6. Benjamin Maas, 2022. "Literature Review of Mobility as a Service," Sustainability, MDPI, vol. 14(14), pages 1-28, July.
    7. Lopez-Carreiro, Iria & Monzon, Andres & Lopez-Lambas, Maria E., 2021. "Comparison of the willingness to adopt MaaS in Madrid (Spain) and Randstad (The Netherlands) metropolitan areas," Transportation Research Part A: Policy and Practice, Elsevier, vol. 152(C), pages 275-294.
    8. Palmer, Kurt & Dessouky, Maged & Zhou, Zhiqiang, 2008. "Factors influencing productivity and operating cost of demand responsive transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 42(3), pages 503-523, March.
    9. Pangbourne, Kate & Mladenović, Miloš N. & Stead, Dominic & Milakis, Dimitris, 2020. "Questioning mobility as a service: Unanticipated implications for society and governance," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 35-49.
    10. Jokinen, Jani-Pekka & Sihvola, Teemu & Mladenovic, Milos N., 2019. "Policy lessons from the flexible transport service pilot Kutsuplus in the Helsinki Capital Region," Transport Policy, Elsevier, vol. 76(C), pages 123-133.
    11. Levy, Nadav & Golani, Chen & Ben-Elia, Eran, 2019. "An exploratory study of spatial patterns of cycling in Tel Aviv using passively generated bike-sharing data," Journal of Transport Geography, Elsevier, vol. 76(C), pages 325-334.
    12. Feitelson, Eran & Cohen-Blankshtain, Galit, 2018. "Public transport planning in a spatially segmented city: The case of Jerusalem," Transportation Research Part A: Policy and Practice, Elsevier, vol. 107(C), pages 65-74.
    13. Kim, Seheon & Rasouli, Soora, 2022. "The influence of latent lifestyle on acceptance of Mobility-as-a-Service (MaaS): A hierarchical latent variable and latent class approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 159(C), pages 304-319.
    14. Nikitas, Alexandros & Cotet, Corneliu & Vitel, Alexandra-Elena & Nikitas, Nikolaos & Prato, Carlo, 2024. "Transport stakeholders’ perceptions of Mobility-as-a-Service: A Q-study of cultural shift proponents, policy advocates and technology supporters," Transportation Research Part A: Policy and Practice, Elsevier, vol. 181(C).
    15. Zahra Navidi & Nicole Ronald & Stephan Winter, 2018. "Comparison between ad-hoc demand responsive and conventional transit: a simulation study," Public Transport, Springer, vol. 10(1), pages 147-167, May.
    16. Mounce, Richard & Nelson, John D., 2019. "On the potential for one-way electric vehicle car-sharing in future mobility systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 120(C), pages 17-30.
    17. Arto O Salonen & Noora Haavisto, 2019. "Towards Autonomous Transportation. Passengers’ Experiences, Perceptions and Feelings in a Driverless Shuttle Bus in Finland," Sustainability, MDPI, vol. 11(3), pages 1-19, January.
    18. Knierim, Lukas & Schlüter, Jan Christian, 2021. "The attitude of potentially less mobile people towards demand responsive transport in a rural area in central Germany," Journal of Transport Geography, Elsevier, vol. 96(C).
    19. Xi, Haoning & Liu, Wei & Waller, S. Travis & Hensher, David A. & Kilby, Philip & Rey, David, 2023. "Incentive-compatible mechanisms for online resource allocation in Mobility-as-a-Service systems," Transportation Research Part B: Methodological, Elsevier, vol. 170(C), pages 119-147.
    20. Beheshtian, Arash & Richard Geddes, R. & Rouhani, Omid M. & Kockelman, Kara M. & Ockenfels, Axel & Cramton, Peter & Do, Wooseok, 2020. "Bringing the efficiency of electricity market mechanisms to multimodal mobility across congested transportation systems," Transportation Research Part A: Policy and Practice, Elsevier, vol. 131(C), pages 58-69.

    More about this item

    Keywords

    Demand responsive transport; Sydney public transport; Land passenger transport;
    All these keywords.

    JEL classification:

    • L91 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Transportation: General
    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation
    • O18 - Economic Development, Innovation, Technological Change, and Growth - - Economic Development - - - Urban, Rural, Regional, and Transportation Analysis; Housing; Infrastructure
    • R41 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Transportation: Demand, Supply, and Congestion; Travel Time; Safety and Accidents; Transportation Noise
    • R42 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Government and Private Investment Analysis; Road Maintenance; Transportation Planning

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:83:y:2020:i:c:s0739885920301025. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.