IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v71y2018icp34-43.html
   My bibliography  Save this article

A method for processing the Confidential Carload Waybill Sample for railroad freight analysis

Author

Listed:
  • Fialkoff, Marc R.
  • Hancock, Kathleen L.
  • Peterson, Steven K.

Abstract

Freight transportation research is often constrained by the availability of useful data. In the context of freight rail research, traditional freight data sets do not provide sufficient resolution for detailed analysis of railroad freight flows. In addition to aggregated data, the complexity of railroad operations limits the usability of publicly available freight flow data. As part of their regulatory authority, the Surface Transportation has maintained the Confidential Carload Waybill Sample, a stratified sample representing 1%–3% of all railroad traffic in the United States for a year. Although rich with data, the Waybill Sample data requires pre-processing before it can be used for most analysis and visualization. Given this challenge, this paper introduces a tested method to extract, clean, and structure the Waybill Sample for subsequent visualization on a railroad network. The proposed method provides a reproducible approach for enhancing the Waybill Sample for use in railroad freight analysis.

Suggested Citation

  • Fialkoff, Marc R. & Hancock, Kathleen L. & Peterson, Steven K., 2018. "A method for processing the Confidential Carload Waybill Sample for railroad freight analysis," Research in Transportation Economics, Elsevier, vol. 71(C), pages 34-43.
  • Handle: RePEc:eee:retrec:v:71:y:2018:i:c:p:34-43
    DOI: 10.1016/j.retrec.2018.10.004
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885918302695
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2018.10.004?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Arnold, Pierre & Peeters, Dominique & Thomas, Isabelle, 2004. "Modelling a rail/road intermodal transportation system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 40(3), pages 255-270, May.
    2. Fialkoff, Marc R. & Omitaomu, Olufemi A. & Peterson, Steven K. & Tuttle, Mark A., 2017. "Using geographic information science to evaluate legal restrictions on freight transportation routing in disruptive scenarios," International Journal of Critical Infrastructure Protection, Elsevier, vol. 17(C), pages 60-74.
    3. Niérat, Patrick, 1997. "Market area of rail-truck terminals: Pertinence of the spatial theory," Transportation Research Part A: Policy and Practice, Elsevier, vol. 31(2), pages 109-127, March.
    4. Krier, Betty & Liu, Chia-Mei & McNamara, Brian & Sharpe, Jerrod, 2014. "Individual freight effects, capacity utilization, and Amtrak service quality," Transportation Research Part A: Policy and Practice, Elsevier, vol. 64(C), pages 163-175.
    5. Carlos F. Daganzo, 1987. "The Break-Bulk Role of Terminals in Many-to-Many Logistic Networks," Operations Research, INFORMS, vol. 35(4), pages 543-555, August.
    6. Steven K. Peterson & Richard L. Church, 2008. "A Framework for Modeling Rail Transport Vulnerability," Growth and Change, Wiley Blackwell, vol. 39(4), pages 617-641, December.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hernandez, Adrian & Ng, Max & Durango-Cohen, Pablo L. & Mahmassani, Hani S., 2024. "Optimizing service networks to support freight rail decarbonization: Flow selection, facility location, and energy sourcing," European Journal of Operational Research, Elsevier, vol. 317(3), pages 906-920.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Peterson, Steven, 2005. "Factors Influencing Inter-Modal Facility Location Decisions: Comparison of Different Empirical Estimation Procedures," 46th Annual Transportation Research Forum, Washington, D.C., March 6-8, 2005 208177, Transportation Research Forum.
    2. Kim, Nam Seok & Van Wee, Bert, 2011. "The relative importance of factors that influence the break-even distance of intermodal freight transport systems," Journal of Transport Geography, Elsevier, vol. 19(4), pages 859-875.
    3. Teye, Collins & Bell, Michael GH & Bliemer, Michiel CJ, 2018. "Locating urban and regional container terminals in a competitive environment: An entropy maximising approach," Transportation Research Part B: Methodological, Elsevier, vol. 117(PB), pages 971-985.
    4. Teye, Collins & Bell, Michael G H & Bliemer, Michiel C J, 2017. "Urban intermodal terminals: The entropy maximising facility location problem," Transportation Research Part B: Methodological, Elsevier, vol. 100(C), pages 64-81.
    5. Gong, Manlin & Hu, Yucong & Chen, Zhiwei & Li, Xiaopeng, 2021. "Transfer-based customized modular bus system design with passenger-route assignment optimization," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 153(C).
    6. Casavant, Ken & Jessup, Eric, 2005. "What Makes them Viable? Determining the Attributes that Offer Potential Viability to Inter-Modal Truck-Rail Facilities in Washington State," 46th Annual Transportation Research Forum, Washington, D.C., March 6-8, 2005 208221, Transportation Research Forum.
    7. James F. Campbell & Morton E. O'Kelly, 2012. "Twenty-Five Years of Hub Location Research," Transportation Science, INFORMS, vol. 46(2), pages 153-169, May.
    8. Babagolzadeh, Mahla & Zhang, Yahua & Abbasi, Babak & Shrestha, Anup & Zhang, Anming, 2022. "Promoting Australian regional airports with subsidy schemes: Optimised downstream logistics using vehicle routing problem," Transport Policy, Elsevier, vol. 128(C), pages 38-51.
    9. He, Yan & Wu, Tao & Zhang, Canrong & Liang, Zhe, 2015. "An improved MIP heuristic for the intermodal hub location problem," Omega, Elsevier, vol. 57(PB), pages 203-211.
    10. Badia, Hugo & Argote-Cabanero , Juan & Daganzo, Carlos F., 2016. "Network Effects in Bus Transit: Evidence from Barcelona’s Nova Xarxa," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3996t4c6, Institute of Transportation Studies, UC Berkeley.
    11. Raymond K. Cheung & B. Muralidharan, 2000. "Dynamic Routing for Priority Shipments in LTL Service Networks," Transportation Science, INFORMS, vol. 34(1), pages 86-98, February.
    12. Maiyar, Lohithaksha M. & Thakkar, Jitesh J., 2019. "Modelling and analysis of intermodal food grain transportation under hub disruption towards sustainability," International Journal of Production Economics, Elsevier, vol. 217(C), pages 281-297.
    13. Alumur, Sibel A. & Yaman, Hande & Kara, Bahar Y., 2012. "Hierarchical multimodal hub location problem with time-definite deliveries," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(6), pages 1107-1120.
    14. Hong, Liu & Ye, Bowen & Yan, Han & Zhang, Hui & Ouyang, Min & (Sean) He, Xiaozheng, 2019. "Spatiotemporal vulnerability analysis of railway systems with heterogeneous train flows," Transportation Research Part A: Policy and Practice, Elsevier, vol. 130(C), pages 725-744.
    15. Zhao, Yiran & Yang, Zhongzhen & Haralambides, Hercules, 2019. "Optimizing the transport of export containers along China's coronary artery: The Yangtze River," Journal of Transport Geography, Elsevier, vol. 77(C), pages 11-25.
    16. Alumur, Sibel A. & Kara, Bahar Y. & Karasan, Oya E., 2012. "Multimodal hub location and hub network design," Omega, Elsevier, vol. 40(6), pages 927-939.
    17. Badia, Hugo & Argote-Cabanero, Juan & Daganzo, Carlos F., 2017. "How network structure can boost and shape the demand for bus transit," Transportation Research Part A: Policy and Practice, Elsevier, vol. 103(C), pages 83-94.
    18. Gkiotsalitis, K. & Cats, O. & Liu, T. & Bult, J.M., 2023. "An exact optimization method for coordinating the arrival times of urban rail lines at a common corridor," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 178(C).
    19. Milorad Vidović & Slobodan Zečević & Milorad Kilibarda & Jelena Vlajić & Nenad Bjelić & Snežana Tadić, 2011. "The p-hub Model with Hub-catchment Areas, Existing Hubs, and Simulation: A Case Study of Serbian Intermodal Terminals," Networks and Spatial Economics, Springer, vol. 11(2), pages 295-314, June.
    20. Bevrani, Bayan & Burdett, Robert & Bhaskar, Ashish & Yarlagadda, Prasad K.D.V., 2020. "A multi-criteria multi-commodity flow model for analysing transportation networks," Operations Research Perspectives, Elsevier, vol. 7(C).

    More about this item

    Keywords

    Origin-destination matrix; Railroads; Rail network; Waybills;
    All these keywords.

    JEL classification:

    • R40 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - General
    • R49 - Urban, Rural, Regional, Real Estate, and Transportation Economics - - Transportation Economics - - - Other
    • L92 - Industrial Organization - - Industry Studies: Transportation and Utilities - - - Railroads and Other Surface Transportation

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:71:y:2018:i:c:p:34-43. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.