IDEAS home Printed from https://ideas.repec.org/a/eee/retrec/v105y2024ics0739885924000350.html
   My bibliography  Save this article

Projections of the costs of light-duty battery-electric and fuel cell vehicles (2020–2040) and related economic issues

Author

Listed:
  • Burke, Andrew F.
  • Zhao, Jingyuan
  • Fulton, Lewis M.

Abstract

This paper provides a comprehensive analysis of the initial costs and total cost of ownership (TCO) for light-duty battery electric vehicles (BEVs) and fuel cell vehicles (FCVs) from 2020 to 2040, covering cars, SUVs, and light trucks, alongside the infrastructure requirements. Key findings indicate that by 2040, the initial costs for BEVs will align with those of gasoline vehicles if battery costs can reach cell-level $70/kWh (or pack-level $84/kWh). For FCVs, achieving cost parity with gasoline cars before 2040 will be challenging unless the cost of fuel cells decreases to about $40/kW through high-volume production (>500000 units). Regarding 5-year TCOs, both BEVs and FCVs are expected to be close to or slightly lower than those of gasoline vehicles by 2040 across all LDV market segments. Investment analysis for large fleets suggests that by 2040, public fast charging for BEVs could cost $2000/vehicle, and hydrogen refueling for FCVs $1100/vehicle. Additionally, the study assesses the impact of low carbon fuel standard (LCFS) credits on the profitability of refueling stations, concluding that these credits are essential for transforming potentially unprofitable stations into profitable ventures with returns of 5% or higher. This highlights the critical role of LCFS in financing BEVs and FCVs infrastructure.

Suggested Citation

  • Burke, Andrew F. & Zhao, Jingyuan & Fulton, Lewis M., 2024. "Projections of the costs of light-duty battery-electric and fuel cell vehicles (2020–2040) and related economic issues," Research in Transportation Economics, Elsevier, vol. 105(C).
  • Handle: RePEc:eee:retrec:v:105:y:2024:i:c:s0739885924000350
    DOI: 10.1016/j.retrec.2024.101440
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0739885924000350
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.retrec.2024.101440?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Burke, Andrew, 2022. "Assessment of Requirements, Costs, and Benefits of Providing Charging Facilities for Battery-Electric Heavy-Duty Trucks at Safety Roadside Rest Areas," Institute of Transportation Studies, Working Paper Series qt3c07s2jh, Institute of Transportation Studies, UC Davis.
    2. Hsieh, I-Yun Lisa & Pan, Menghsuan Sam & Chiang, Yet-Ming & Green, William H., 2019. "Learning only buys you so much: Practical limits on battery price reduction," Applied Energy, Elsevier, vol. 239(C), pages 218-224.
    3. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    4. Zhao, Hengbing & Burke, Andrew, 2015. "Modelling and Analysis of Plug-in Series-Parallel Hybrid Medium-Duty Vehicles," Institute of Transportation Studies, Working Paper Series qt37z105pr, Institute of Transportation Studies, UC Davis.
    5. Burke, Andrew & Fulton, Lewis, 2022. "Use Of Liquid Hydrogen in Heavy-Duty Vehicle Applications: Station And Vehicle Technology and Cost Considerations," Institute of Transportation Studies, Working Paper Series qt22z8260f, Institute of Transportation Studies, UC Davis.
    6. Zachary P. Cano & Dustin Banham & Siyu Ye & Andreas Hintennach & Jun Lu & Michael Fowler & Zhongwei Chen, 2018. "Batteries and fuel cells for emerging electric vehicle markets," Nature Energy, Nature, vol. 3(4), pages 279-289, April.
    7. Mauler, Lukas & Duffner, Fabian & Leker, Jens, 2021. "Economies of scale in battery cell manufacturing: The impact of material and process innovations," Applied Energy, Elsevier, vol. 286(C).
    8. Matteo Muratori & Brian Bush & Chad Hunter & Marc W. Melaina, 2018. "Modeling Hydrogen Refueling Infrastructure to Support Passenger Vehicles †," Energies, MDPI, vol. 11(5), pages 1-14, May.
    9. Burke, Andrew & Zhao, Jingyuan & Miller, Marshall & Fulton, Lewis, 2023. "Vehicle Choice Modeling for Light-, Medium-, and Heavy-Duty Zero-Emission Vehicles in California," Institute of Transportation Studies, Working Paper Series qt7437p058, Institute of Transportation Studies, UC Davis.
    10. Björn Nykvist & Måns Nilsson, 2015. "Rapidly falling costs of battery packs for electric vehicles," Nature Climate Change, Nature, vol. 5(4), pages 329-332, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yifan Wang & Laurence A. Wright, 2021. "A Comparative Review of Alternative Fuels for the Maritime Sector: Economic, Technology, and Policy Challenges for Clean Energy Implementation," World, MDPI, vol. 2(4), pages 1-26, October.
    2. Sun, Li & Sun, Wen & You, Fengqi, 2020. "Core temperature modelling and monitoring of lithium-ion battery in the presence of sensor bias," Applied Energy, Elsevier, vol. 271(C).
    3. Schauf, Magnus & Schwenen, Sebastian, 2023. "System price dynamics for battery storage," Energy Policy, Elsevier, vol. 183(C).
    4. Schwab, Julia & Sölch, Christian & Zöttl, Gregor, 2022. "Electric Vehicle Cost in 2035: The impact of market penetration and charging strategies," Energy Economics, Elsevier, vol. 114(C).
    5. Marcin Połom & Maciej Tarkowski & Krystian Puzdrakiewicz & Łukasz Dopierała, 2020. "Is It Possible to Develop Electromobility in Urban Passenger Shipping in Post-Communist Countries? Evidence from Gdańsk, Poland," Energies, MDPI, vol. 13(23), pages 1-24, December.
    6. Cotterman, Turner & Fuchs, Erica R.H. & Whitefoot, Kate S. & Combemale, Christophe, 2024. "The transition to electrified vehicles: Evaluating the labor demand of manufacturing conventional versus battery electric vehicle powertrains," Energy Policy, Elsevier, vol. 188(C).
    7. Tang-Min Hsieh & Kai-Ying Chen, 2024. "Developmental Trajectories of Electric Vehicle Research in a Circular Economy: Main Path Analysis," Sustainability, MDPI, vol. 16(18), pages 1-40, September.
    8. Yang, Chen, 2022. "Running battery electric vehicles with extended range: Coupling cost and energy analysis," Applied Energy, Elsevier, vol. 306(PB).
    9. Plunkett, Samuel T. & Chen, Chengxiu & Rojaee, Ramin & Doherty, Patrick & Sik Oh, Yun & Galazutdinova, Yana & Krishnamurthy, Mahesh & Al-Hallaj, Said, 2021. "Enhancing thermal safety in lithium-ion battery packs through parallel cell ‘current dumping’ mitigation," Applied Energy, Elsevier, vol. 286(C).
    10. Steffen Link & Annegret Stephan & Daniel Speth & Patrick Plötz, 2024. "Rapidly declining costs of truck batteries and fuel cells enable large-scale road freight electrification," Nature Energy, Nature, vol. 9(8), pages 1032-1039, August.
    11. Malhotra, Abhishek & Zhang, Huiting & Beuse, Martin & Schmidt, Tobias, 2021. "How do new use environments influence a technology's knowledge trajectory? A patent citation network analysis of lithium-ion battery technology," Research Policy, Elsevier, vol. 50(9).
    12. Xaviery N. Penisa & Michael T. Castro & Jethro Daniel A. Pascasio & Eugene A. Esparcia & Oliver Schmidt & Joey D. Ocon, 2020. "Projecting the Price of Lithium-Ion NMC Battery Packs Using a Multifactor Learning Curve Model," Energies, MDPI, vol. 13(20), pages 1-18, October.
    13. Yang, Zaoli & Li, Qin & Yan, Yamin & Shang, Wen-Long & Ochieng, Washington, 2022. "Examining influence factors of Chinese electric vehicle market demand based on online reviews under moderating effect of subsidy policy," Applied Energy, Elsevier, vol. 326(C).
    14. Ettore Bompard & Daniele Grosso & Tao Huang & Francesco Profumo & Xianzhang Lei & Duo Li, 2018. "World Decarbonization through Global Electricity Interconnections," Energies, MDPI, vol. 11(7), pages 1-29, July.
    15. Huang, Qisheng & Xu, Yunjian & Courcoubetis, Costas, 2020. "Stackelberg competition between merchant and regulated storage investment in wholesale electricity markets," Applied Energy, Elsevier, vol. 264(C).
    16. Gnann, Till & Stephens, Thomas S. & Lin, Zhenhong & Plötz, Patrick & Liu, Changzheng & Brokate, Jens, 2018. "What drives the market for plug-in electric vehicles? - A review of international PEV market diffusion models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 158-164.
    17. Stančin, H. & Mikulčić, H. & Wang, X. & Duić, N., 2020. "A review on alternative fuels in future energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 128(C).
    18. Carsten Helm & Mathias Mier, 2020. "Steering the Energy Transition in a World of Intermittent Electricity Supply: Optimal Subsidies and Taxes for Renewables Storage," ifo Working Paper Series 330, ifo Institute - Leibniz Institute for Economic Research at the University of Munich.
    19. Yashraj Tripathy & Andrew McGordon & Anup Barai, 2020. "Improving Accessible Capacity Tracking at Low Ambient Temperatures for Range Estimation of Battery Electric Vehicles," Energies, MDPI, vol. 13(8), pages 1-18, April.
    20. Maria Taljegard & Lisa Göransson & Mikael Odenberger & Filip Johnsson, 2021. "To Represent Electric Vehicles in Electricity Systems Modelling—Aggregated Vehicle Representation vs. Individual Driving Profiles," Energies, MDPI, vol. 14(3), pages 1-25, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:retrec:v:105:y:2024:i:c:s0739885924000350. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/620614/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.