IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v47y2018i9p1777-1800.html
   My bibliography  Save this article

Federal funding and the rate and direction of inventive activity

Author

Listed:
  • Corredoira, Rafael A.
  • Goldfarb, Brent D.
  • Shi, Yuan

Abstract

Leveraging a new measure of patent citation trees (Corredoira and Banerjee, 2015), we demonstrate that research funded by the federal government is associated with more active and diverse technological trajectories. Our findings tie government funding to breakthrough inventions. The differences are especially evident at the upper percentiles of the distribution of long term patent influence and stem primarily from research conducted outside the federal government and sponsored by the DOD, HHS and NSF. Government funded patents are inputs into a broader range of technologies. Additional analyses indicate that federal programs invest in some technological areas that private corporations eschew, and federally funded university patents are in different technological classes than non-federally funded university patents. In this sense, the government may play an irreplaceable role in the rate and direction of inventive activity.

Suggested Citation

  • Corredoira, Rafael A. & Goldfarb, Brent D. & Shi, Yuan, 2018. "Federal funding and the rate and direction of inventive activity," Research Policy, Elsevier, vol. 47(9), pages 1777-1800.
  • Handle: RePEc:eee:respol:v:47:y:2018:i:9:p:1777-1800
    DOI: 10.1016/j.respol.2018.06.009
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048733318301549
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.respol.2018.06.009?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Andreas Reinstaller & Peter Reschenhofer, 2017. "Using PageRank in the analysis of technological progress through patents: an illustration for biotechnological inventions," Scientometrics, Springer;Akadémiai Kiadó, vol. 113(3), pages 1407-1438, December.
    3. Meyer, Martin, 2000. "Does science push technology? Patents citing scientific literature," Research Policy, Elsevier, vol. 29(3), pages 409-434, March.
    4. Sampat, Bhaven N., 2006. "Patenting and US academic research in the 20th century: The world before and after Bayh-Dole," Research Policy, Elsevier, vol. 35(6), pages 772-789, July.
    5. David C. Mowery & Bhaven N. Sampat & Arvids A. Ziedonis, 2002. "Learning to Patent: Institutional Experience, Learning, and the Characteristics of U.S. University Patents After the Bayh-Dole Act, 1981-1992," Management Science, INFORMS, vol. 48(1), pages 73-89, January.
    6. Rebecca Henderson & Adam B. Jaffe & Manuel Trajtenberg, 1998. "Universities As A Source Of Commercial Technology: A Detailed Analysis Of University Patenting, 1965-1988," The Review of Economics and Statistics, MIT Press, vol. 80(1), pages 119-127, February.
    7. Hall, B. & Jaffe, A. & Trajtenberg, M., 2001. "The NBER Patent Citations Data File: Lessons, Insights and Methodological Tools," Papers 2001-29, Tel Aviv.
    8. David, Paul A. & Hall, Bronwyn H., 2000. "Heart of darkness: modeling public-private funding interactions inside the R&D black box," Research Policy, Elsevier, vol. 29(9), pages 1165-1183, December.
    9. Kenneth Arrow, 1962. "Economic Welfare and the Allocation of Resources for Invention," NBER Chapters, in: The Rate and Direction of Inventive Activity: Economic and Social Factors, pages 609-626, National Bureau of Economic Research, Inc.
    10. Marco Caliendo & Sabine Kopeinig, 2008. "Some Practical Guidance For The Implementation Of Propensity Score Matching," Journal of Economic Surveys, Wiley Blackwell, vol. 22(1), pages 31-72, February.
    11. Mowery, David C. & Ziedonis, Arvids A., 2002. "Academic patent quality and quantity before and after the Bayh-Dole act in the United States," Research Policy, Elsevier, vol. 31(3), pages 399-418, March.
    12. Joshua D. Angrist & Jörn-Steffen Pischke, 2009. "Mostly Harmless Econometrics: An Empiricist's Companion," Economics Books, Princeton University Press, edition 1, number 8769.
    13. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    14. Alberto Abadie & Guido W. Imbens, 2008. "On the Failure of the Bootstrap for Matching Estimators," Econometrica, Econometric Society, vol. 76(6), pages 1537-1557, November.
    15. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    16. Richard R. Nelson, 1959. "The Simple Economics of Basic Scientific Research," Journal of Political Economy, University of Chicago Press, vol. 67(3), pages 297-297.
    17. Goldfarb, Brent, 2008. "The effect of government contracting on academic research: Does the source of funding affect scientific output," Research Policy, Elsevier, vol. 37(1), pages 41-58, February.
    18. Nagaoka, Sadao & Motohashi, Kazuyuki & Goto, Akira, 2010. "Patent Statistics as an Innovation Indicator," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 2, chapter 0, pages 1083-1127, Elsevier.
    19. Pavitt, Keith, 1991. "What makes basic research economically useful?," Research Policy, Elsevier, vol. 20(2), pages 109-119, April.
    20. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment: Reply," American Economic Review, American Economic Association, vol. 95(1), pages 465-466, March.
    21. Corredoira, Rafael A. & Banerjee, Preeta M., 2015. "Measuring patent's influence on technological evolution: A study of knowledge spanning and subsequent inventive activity," Research Policy, Elsevier, vol. 44(2), pages 508-521.
    22. Peter Thompson & Melanie Fox-Kean, 2005. "Patent Citations and the Geography of Knowledge Spillovers: A Reassessment," American Economic Review, American Economic Association, vol. 95(1), pages 450-460, March.
    23. Leo Katz, 1953. "A new status index derived from sociometric analysis," Psychometrika, Springer;The Psychometric Society, vol. 18(1), pages 39-43, March.
    24. Ajay Agrawal & Rebecca Henderson, 2002. "Putting Patents in Context: Exploring Knowledge Transfer from MIT," Management Science, INFORMS, vol. 48(1), pages 44-60, January.
    25. Ho, Daniel E. & Imai, Kosuke & King, Gary & Stuart, Elizabeth A., 2007. "Matching as Nonparametric Preprocessing for Reducing Model Dependence in Parametric Causal Inference," Political Analysis, Cambridge University Press, vol. 15(3), pages 199-236, July.
    26. Bronwyn H. Hall, 2005. "A Note on the Bias in Herfindahl-Type Measures Based on Count Data," Revue d'Économie Industrielle, Programme National Persée, vol. 110(1), pages 149-156.
    27. Scott J. Wallsten, 2000. "The Effects of Government-Industry R&D Programs on Private R&D: The Case of the Small Business Innovation Research Program," RAND Journal of Economics, The RAND Corporation, vol. 31(1), pages 82-100, Spring.
    28. Narin, Francis & Hamilton, Kimberly S. & Olivastro, Dominic, 1997. "The increasing linkage between U.S. technology and public science," Research Policy, Elsevier, vol. 26(3), pages 317-330, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kok, Holmer & Faems, Dries & de Faria, Pedro, 2022. "Pork Barrel or Barrel of Gold? Examining the performance implications of earmarking in public R&D grants," Research Policy, Elsevier, vol. 51(7).
    2. Iossa, Elisabetta & Decarolis, Francesco & de Rassenfosse, Gaétan & Giuffrida, Leonardo Maria & Mollisi, Vincenzo & Raiteri, Emilio & Spagnolo, Giancarlo, 2019. "Buyers' Role in Innovation Procurement," CEPR Discussion Papers 13777, C.E.P.R. Discussion Papers.
    3. Jaehyuk Park, 2024. "Analyzing the direct role of governmental organizations in artificial intelligence innovation," The Journal of Technology Transfer, Springer, vol. 49(2), pages 437-465, April.
    4. Francesco Decarolis & Gaétan de Rassenfosse & Leonardo M. Giuffrida & Elisabetta Iossa & Vincenzo Mollisi & Emilio Raiteri & Giancarlo Spagnolo, 2021. "Buyers' role in innovation procurement: Evidence from US military R&D contracts," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 30(4), pages 697-720, November.
    5. Nagar, Jay Prakash & Breschi, Stefano & Fosfuri, Andrea, 2024. "ERC science and invention: Does ERC break free from the EU Paradox?," Research Policy, Elsevier, vol. 53(8).
    6. Sven Kevin van Langen & Renato Passaro, 2021. "The Dutch Green Deals Policy and Its Applicability to Circular Economy Policies," Sustainability, MDPI, vol. 13(21), pages 1-17, October.
    7. Michel Dumont, 2019. "Working Paper 04-19 - Tax incentives for business R&D in Belgium - Third evaluation," Working Papers 1904, Federal Planning Bureau, Belgium.
    8. Zhang, Lin & Sun, Mengting & Peng, Yujie & Zhao, Wenjing & Chen, Lixin & Huang, Ying, 2022. "How public investment fuels innovation: Clues from government-subsidized USPTO patents," Journal of Informetrics, Elsevier, vol. 16(3).
    9. Kim, Juram & Lee, Gyumin & Lee, Seungbin & Lee, Changyong, 2022. "Towards expert–machine collaborations for technology valuation: An interpretable machine learning approach," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    10. Jason M. Rathje & Riitta Katila, 2021. "Enabling Technologies and the Role of Private Firms: A Machine Learning Matching Analysis," Strategy Science, INFORMS, vol. 6(1), pages 5-21, March.
    11. Margaret E. Blume-Kohout, 2023. "The case of the interrupting funder: dynamic effects of R&D funding and patenting in U.S. universities," The Journal of Technology Transfer, Springer, vol. 48(4), pages 1221-1242, August.
    12. Ping Zhou & Xiaojing Cai & Xiaozan Lyu, 2020. "An in-depth analysis of government funding and international collaboration in scientific research," Scientometrics, Springer;Akadémiai Kiadó, vol. 125(2), pages 1331-1347, November.
    13. Deleidi, Matteo & Mazzucato, Mariana, 2021. "Directed innovation policies and the supermultiplier: An empirical assessment of mission-oriented policies in the US economy," Research Policy, Elsevier, vol. 50(2).
    14. Helena Lenihan & Kevin Mulligan & Justin Doran & Christian Rammer & Olubunmi Ipinnaiye, 2024. "R&D grants and R&D tax credits to foreign-owned subsidiaries: Does supporting multinational enterprises’ R&D pay off in terms of firm performance improvements for the host economy?," The Journal of Technology Transfer, Springer, vol. 49(2), pages 740-781, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Michael Roach & Wesley M. Cohen, 2012. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," NBER Working Papers 18292, National Bureau of Economic Research, Inc.
    2. Wang, Fang, 2024. "Does the recombination of distant scientific knowledge generate valuable inventions? An analysis of pharmaceutical patents," Technovation, Elsevier, vol. 130(C).
    3. Michael Roach & Wesley M. Cohen, 2013. "Lens or Prism? Patent Citations as a Measure of Knowledge Flows from Public Research," Management Science, INFORMS, vol. 59(2), pages 504-525, October.
    4. Alessandra Scandura, 2019. "The role of scientific and market knowledge in the inventive process: evidence from a survey of industrial inventors," The Journal of Technology Transfer, Springer, vol. 44(4), pages 1029-1069, August.
    5. Beck, Mathias & Junge, Martin & Kaiser, Ulrich, 2017. "Public Funding and Corporate Innovation," IZA Discussion Papers 11196, Institute of Labor Economics (IZA).
    6. Beatriz Pereira Almeida & Eduardo Gonçalves & André Suriane Silva & Raquel Coelho Reis, 2021. "Internalization of knowledge spillovers by regions: a measure based on self-citation patents," The Annals of Regional Science, Springer;Western Regional Science Association, vol. 66(2), pages 309-330, April.
    7. Czarnitzki, Dirk & Hussinger, Katrin & Schneider, Cédric, 2011. "“Wacky” patents meet economic indicators," Economics Letters, Elsevier, vol. 113(2), pages 131-134.
    8. Ugo Rizzo & Nicolò Barbieri & Laura Ramaciotti & Demian Iannantuono, 2020. "The division of labour between academia and industry for the generation of radical inventions," The Journal of Technology Transfer, Springer, vol. 45(2), pages 393-413, April.
    9. Adam B. Jaffe & Gaétan de Rassenfosse, 2017. "Patent citation data in social science research: Overview and best practices," Journal of the Association for Information Science & Technology, Association for Information Science & Technology, vol. 68(6), pages 1360-1374, June.
    10. Dechezlepretre, Antoine & Martin, Ralf & Mohnen, Myra, 2014. "Knowledge spillovers from clean and dirty technologies," LSE Research Online Documents on Economics 60501, London School of Economics and Political Science, LSE Library.
    11. Dirk Czarnitzki & Katrin Hussinger & Cédric Schneider, 2011. "Commercializing academic research: the quality of faculty patenting," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 20(5), pages 1403-1437, October.
    12. Po‐Hsuan Hsu & Hai‐Ping Hui & Hsiao‐Hui Lee & Kevin Tseng, 2022. "Supply chain technology spillover, customer concentration, and product invention," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(2), pages 393-417, April.
    13. Larsen, Maria Theresa, 2011. "The implications of academic enterprise for public science: An overview of the empirical evidence," Research Policy, Elsevier, vol. 40(1), pages 6-19, February.
    14. Dominik Heinisch & Önder Nomaler & Guido Buenstorf & Koen Frenken & Harry Lintsen, 2016. "Same place, same knowledge -- same people? The geography of non-patent citations in Dutch polymer patents," Economics of Innovation and New Technology, Taylor & Francis Journals, vol. 25(6), pages 553-572, September.
    15. Sterzi, Valerio, 2013. "Patent quality and ownership: An analysis of UK faculty patenting," Research Policy, Elsevier, vol. 42(2), pages 564-576.
    16. Cohen, Wesley M., 2010. "Fifty Years of Empirical Studies of Innovative Activity and Performance," Handbook of the Economics of Innovation, in: Bronwyn H. Hall & Nathan Rosenberg (ed.), Handbook of the Economics of Innovation, edition 1, volume 1, chapter 0, pages 129-213, Elsevier.
    17. Corradini, Carlo & De Propris, Lisa, 2017. "Beyond local search: Bridging platforms and inter-sectoral technological integration," Research Policy, Elsevier, vol. 46(1), pages 196-206.
    18. Forman, Chris & van Zeebroeck, Nicolas, 2019. "Digital technology adoption and knowledge flows within firms: Can the Internet overcome geographic and technological distance?," Research Policy, Elsevier, vol. 48(8), pages 1-1.
    19. Cassiman, Bruno & Veugelers, Reinhilde & Arts, Sam, 2018. "Mind the gap: Capturing value from basic research through combining mobile inventors and partnerships," Research Policy, Elsevier, vol. 47(9), pages 1811-1824.
    20. Griffith, Rachel & Lee, Sokbae & Straathof, Bas, 2017. "Recombinant innovation and the boundaries of the firm," International Journal of Industrial Organization, Elsevier, vol. 50(C), pages 34-56.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:47:y:2018:i:9:p:1777-1800. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.