IDEAS home Printed from https://ideas.repec.org/a/eee/respol/v39y2010i1p89-102.html
   My bibliography  Save this article

Categorical coherence, classification volatility and examiner-added citations

Author

Listed:
  • Tan, David
  • Roberts, Peter W.

Abstract

Patent applicants and examiners do not always have the same views about what constitutes a patent's relevant prior art. We propose that the processes of categorization and classification variably shape the interface between applicants and examiners by influencing assessments of similarity between new and existing technologies. Some inventions sit in technological domains that cut across the categorical boundaries implied by examiners' patterns of specialization. Some sit in domains wherein the classification system that guides examiner searches is more volatile. In either of these circumstances, heightened ambiguity leads to more examiner-added citations on patents that are granted. We test and confirm our predictions in a sample of patents granted to semiconductor firms in 2005.

Suggested Citation

  • Tan, David & Roberts, Peter W., 2010. "Categorical coherence, classification volatility and examiner-added citations," Research Policy, Elsevier, vol. 39(1), pages 89-102, February.
  • Handle: RePEc:eee:respol:v:39:y:2010:i:1:p:89-102
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0048-7333(09)00205-4
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Juan Alcácer & Michelle Gittelman, 2006. "Patent Citations as a Measure of Knowledge Flows: The Influence of Examiner Citations," The Review of Economics and Statistics, MIT Press, vol. 88(4), pages 774-779, November.
    2. Ronald Burt & Patrick Doreian, 1982. "Testing a structural model of perception: Conformity and deviance with respect to Journal norms in elite sociological methodology," Quality & Quantity: International Journal of Methodology, Springer, vol. 16(2), pages 109-150, April.
    3. Dosi, Giovanni, 1993. "Technological paradigms and technological trajectories : A suggested interpretation of the determinants and directions of technical change," Research Policy, Elsevier, vol. 22(2), pages 102-103, April.
    4. Choi, Jay Pil, 1998. "Patent Litigation as an Information-Transmission Mechanism," American Economic Review, American Economic Association, vol. 88(5), pages 1249-1263, December.
    5. Alcácer, Juan & Gittelman, Michelle & Sampat, Bhaven, 2009. "Applicant and examiner citations in U.S. patents: An overview and analysis," Research Policy, Elsevier, vol. 38(2), pages 415-427, March.
    6. Ezra W. Zuckerman & Tai-Young Kim, 2003. "The critical trade-off: identity assignment and box-office success in the feature film industry," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 12(1), pages 27-67, February.
    7. Burke, Paul F. & Reitzig, Markus, 2007. "Measuring patent assessment quality--Analyzing the degree and kind of (in)consistency in patent offices' decision making," Research Policy, Elsevier, vol. 36(9), pages 1404-1430, November.
    8. Lee Fleming, 2002. "Finding the organizational sources of technological breakthroughs: the story of Hewlett-Packard's thermal ink-jet," Industrial and Corporate Change, Oxford University Press and the Associazione ICC, vol. 11(5), pages 1059-1084, November.
    9. Lee Fleming, 2001. "Recombinant Uncertainty in Technological Search," Management Science, INFORMS, vol. 47(1), pages 117-132, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. J.-P. Vergne & Tyler Wry, 2014. "Categorizing Categorization Research: Review, Integration, and Future Directions," Journal of Management Studies, Wiley Blackwell, vol. 51(1), pages 56-94, January.
    2. Julie Callaert & Maikel Pellens & Bart Looy, 2014. "Sources of inspiration? Making sense of scientific references in patents," Scientometrics, Springer;Akadémiai Kiadó, vol. 98(3), pages 1617-1629, March.
    3. Anne Bowers, 2015. "Relative Comparison and Category Membership: The Case of Equity Analysts," Organization Science, INFORMS, vol. 26(2), pages 571-583, April.
    4. Zhu, Kejia & Malhotra, Shavin & Li, Yaohan, 2022. "Technological diversity of patent applications and decision pendency," Research Policy, Elsevier, vol. 51(1).
    5. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    6. Sarah Kaplan & Keyvan Vakili, 2015. "The double-edged sword of recombination in breakthrough innovation," Strategic Management Journal, Wiley Blackwell, vol. 36(10), pages 1435-1457, October.
    7. Lo, Jade Y. & Li, Haiyang, 2018. "In the eyes of the beholder: The effect of participant diversity on perceived merits of collaborative innovations," Research Policy, Elsevier, vol. 47(7), pages 1229-1242.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Inchae Park & Yujin Jeong & Byungun Yoon, 2017. "Analyzing the value of technology based on the differences of patent citations between applicants and examiners," Scientometrics, Springer;Akadémiai Kiadó, vol. 111(2), pages 665-691, May.
    2. Hyun Ju Jung, 2020. "Recombination sources and breakthrough inventions: university-developed technology versus firm-developed technology," The Journal of Technology Transfer, Springer, vol. 45(4), pages 1121-1166, August.
    3. Kathryn Rudie Harrigan & Maria Chiara Guardo & Bo Cowgill, 2017. "Multiplicative-innovation synergies: tests in technological acquisitions," The Journal of Technology Transfer, Springer, vol. 42(5), pages 1212-1233, October.
    4. Battke, Benedikt & Schmidt, Tobias S. & Stollenwerk, Stephan & Hoffmann, Volker H., 2016. "Internal or external spillovers—Which kind of knowledge is more likely to flow within or across technologies," Research Policy, Elsevier, vol. 45(1), pages 27-41.
    5. Hoppmann, Joern & Wu, Geng & Johnson, Jillian, 2021. "The impact of demand-pull and technology-push policies on firms’ knowledge search," Technological Forecasting and Social Change, Elsevier, vol. 170(C).
    6. Sam Arts & Lee Fleming, 2018. "Paradise of Novelty—Or Loss of Human Capital? Exploring New Fields and Inventive Output," Organization Science, INFORMS, vol. 29(6), pages 1074-1092, December.
    7. Barirani, Ahmad & Beaudry, Catherine & Agard, Bruno, 2017. "Can universities profit from general purpose inventions? The case of Canadian nanotechnology patents," Technological Forecasting and Social Change, Elsevier, vol. 120(C), pages 271-283.
    8. Martin Kalthaus, 2020. "Knowledge recombination along the technology life cycle," Journal of Evolutionary Economics, Springer, vol. 30(3), pages 643-704, July.
    9. Hur, Wonchang & Oh, Junbyoung, 2021. "A man is known by the company he keeps?: A structural relationship between backward citation and forward citation of patents," Research Policy, Elsevier, vol. 50(1).
    10. Andrew Eckert & Corinne Langinier, 2014. "A Survey Of The Economics Of Patent Systems And Procedures," Journal of Economic Surveys, Wiley Blackwell, vol. 28(5), pages 996-1015, December.
    11. Apa, Roberta & De Noni, Ivan & Orsi, Luigi & Sedita, Silvia Rita, 2018. "Knowledge space oddity: How to increase the intensity and relevance of the technological progress of European regions," Research Policy, Elsevier, vol. 47(9), pages 1700-1712.
    12. Ahmad Barirani & Bruno Agard & Catherine Beaudry, 2013. "Discovering and assessing fields of expertise in nanomedicine: a patent co-citation network perspective," Scientometrics, Springer;Akadémiai Kiadó, vol. 94(3), pages 1111-1136, March.
    13. de Rassenfosse, Gaétan & Pellegrino, Gabriele & Raiteri, Emilio, 2024. "Do patents enable disclosure? Evidence from the invention secrecy act," International Journal of Industrial Organization, Elsevier, vol. 92(C).
    14. Kaplan, Sarah & Tripsas, Mary, 2008. "Thinking about technology: Applying a cognitive lens to technical change," Research Policy, Elsevier, vol. 37(5), pages 790-805, June.
    15. Po‐Hsuan Hsu & Hai‐Ping Hui & Hsiao‐Hui Lee & Kevin Tseng, 2022. "Supply chain technology spillover, customer concentration, and product invention," Journal of Economics & Management Strategy, Wiley Blackwell, vol. 31(2), pages 393-417, April.
    16. Keijl, S. & Gilsing, V.A. & Knoben, J. & Duysters, G., 2016. "The two faces of inventions: The relationship between recombination and impact in pharmaceutical biotechnology," Research Policy, Elsevier, vol. 45(5), pages 1061-1074.
    17. Kelchtermans, Stijn & Leten, Bart & Rabijns, Maarten & Riccaboni, Massimo, 2022. "Do licensors learn from out-licensing? Empirical evidence from the pharmaceutical industry," Technovation, Elsevier, vol. 112(C).
    18. Sun, Bixuan & Kolesnikov, Sergey & Goldstein, Anna & Chan, Gabriel, 2021. "A dynamic approach for identifying technological breakthroughs with an application in solar photovoltaics," Technological Forecasting and Social Change, Elsevier, vol. 165(C).
    19. Madeline K. Kneeland & Melissa A. Schilling & Barak S. Aharonson, 2020. "Exploring Uncharted Territory: Knowledge Search Processes in the Origination of Outlier Innovation," Organization Science, INFORMS, vol. 31(3), pages 535-557, May.
    20. Peter T. Gianiodis & Matthias Thürer, 2018. "The Impact Of Government Intervention On Technological Regimes: The Sourcing Of Financial Innovation," International Journal of Innovation Management (ijim), World Scientific Publishing Co. Pte. Ltd., vol. 22(03), pages 1-28, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:respol:v:39:y:2010:i:1:p:89-102. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/respol .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.