IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v9y2005i6p576-591.html
   My bibliography  Save this article

Simulation of solar heating systems--an overview

Author

Listed:
  • Nafey, Abmed Safwat

Abstract

Process simulation has become an accepted tool for the performance, design, and optimization of thermal processes. Solving the mathematical models representing solar heating process units and systems is one of the most tedious and repetitive problems. Nested iterative procedures are usually needed to solve these models. To tackle these problems, several researchers have developed different methods, techniques, and computer programs for the simulation of very wide verity of solar heating process units and systems. It is of interest in this work to characterize and classify these methods, techniques, and programs in order to better understand their relations, types, structures, and procedures. The simulation problems are outlined; the simulation programs are grouped into two main types; special purpose, and general-purpose programs. Sequential and simultaneous computational sequences are illustrated. Simulator structure, program evaluation, and numerical techniques are summarized. By considering the unit and/or system entropy generation as well as the energy and material balances equations, more realistic models can be obtained. Also, rapid development of computer hardware and software will suggest new techniques and programs to be considered. These progress directions are noted.

Suggested Citation

  • Nafey, Abmed Safwat, 2005. "Simulation of solar heating systems--an overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 576-591, December.
  • Handle: RePEc:eee:rensus:v:9:y:2005:i:6:p:576-591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(04)00079-6
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bojić, M. & Kalogirou, S. & Petronijević, K., 2002. "Simulation of a solar domestic water heating system using a time marching model," Renewable Energy, Elsevier, vol. 27(3), pages 441-452.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: Proportional flow rate control," Energy, Elsevier, vol. 138(C), pages 668-681.
    2. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: On-off flow rate control," Energy, Elsevier, vol. 119(C), pages 637-651.
    3. Javadi, F.S. & Saidur, R. & Kamalisarvestani, M., 2013. "Investigating performance improvement of solar collectors by using nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 28(C), pages 232-245.
    4. Golic, K. & Kosoric, V. & Furundzic, A. Krstic, 2011. "General model of solar water heating system integration in residential building refurbishment--Potential energy savings and environmental impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1533-1544, April.
    5. Miguel, A.F. & Silva, A., 2010. "Solar irradiation in diffusely enclosures with partitions," Applied Energy, Elsevier, vol. 87(3), pages 836-842, March.
    6. Sharma, Naveen & Varun, & Siddhartha,, 2012. "Stochastic techniques used for optimization in solar systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1399-1411.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Rosas-Flores, Jorge Alberto & Rosas-Flores, Dionicio & Fernández Zayas, José Luis, 2016. "Potential energy saving in urban and rural households of Mexico by use of solar water heaters, using geographical information system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 243-252.
    2. Rodríguez-Hidalgo, M.C. & Rodríguez-Aumente, P.A. & Lecuona, A. & Legrand, M. & Ventas, R., 2012. "Domestic hot water consumption vs. solar thermal energy storage: The optimum size of the storage tank," Applied Energy, Elsevier, vol. 97(C), pages 897-906.
    3. Benli, Hüseyin, 2016. "Potential application of solar water heaters for hot water production in Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 99-109.
    4. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: Proportional flow rate control," Energy, Elsevier, vol. 138(C), pages 668-681.
    5. Ho, C.D. & Chen, T.C., 2008. "Collector efficiency improvement of recyclic double-pass sheet-and-tube solar water heaters with internal fins attached," Renewable Energy, Elsevier, vol. 33(4), pages 655-664.
    6. Carboni, Christian & Montanari, Roberto, 2008. "Solar thermal systems: Advantages in domestic integration," Renewable Energy, Elsevier, vol. 33(6), pages 1364-1373.
    7. Kim, Jimin & Hong, Taehoon & Jeong, Jaemin & Lee, Myeonghwi & Koo, Choongwan & Lee, Minhyun & Ji, Changyoon & Jeong, Jaewook, 2016. "An integrated multi-objective optimization model for determining the optimal solution in the solar thermal energy system," Energy, Elsevier, vol. 102(C), pages 416-426.
    8. Araújo, António & Silva, Rui, 2020. "Energy modeling of solar water heating systems with on-off control and thermally stratified storage using a fast computation algorithm," Renewable Energy, Elsevier, vol. 150(C), pages 891-906.
    9. Araújo, António & Pereira, Vítor, 2017. "Solar thermal modeling for rapid estimation of auxiliary energy requirements in domestic hot water production: On-off flow rate control," Energy, Elsevier, vol. 119(C), pages 637-651.
    10. Naspolini, Helena F. & Rüther, Ricardo, 2012. "Assessing the technical and economic viability of low-cost domestic solar hot water systems (DSHWS) in low-income residential dwellings in Brazil," Renewable Energy, Elsevier, vol. 48(C), pages 92-99.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:9:y:2005:i:6:p:576-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.