Opportunities for large-scale energy storage in geological formations in mainland Portugal
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2018.09.036
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Venkataramani, Gayathri & Parankusam, Prasanna & Ramalingam, Velraj & Wang, Jihong, 2016. "A review on compressed air energy storage – A pathway for smart grid and polygeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 895-907.
- Aneke, Mathew & Wang, Meihong, 2016. "Energy storage technologies and real life applications – A state of the art review," Applied Energy, Elsevier, vol. 179(C), pages 350-377.
- Gao, Qing & Li, Ming & Yu, Ming & Spitler, Jeffrey D. & Yan, Y.Y., 2009. "Review of development from GSHP to UTES in China and other countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1383-1394, August.
- Budt, Marcus & Wolf, Daniel & Span, Roland & Yan, Jinyue, 2016. "A review on compressed air energy storage: Basic principles, past milestones and recent developments," Applied Energy, Elsevier, vol. 170(C), pages 250-268.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Wenxiao Chu & Francesco Calise & Neven Duić & Poul Alberg Østergaard & Maria Vicidomini & Qiuwang Wang, 2020. "Recent Advances in Technology, Strategy and Application of Sustainable Energy Systems," Energies, MDPI, vol. 13(19), pages 1-29, October.
- Lankof, Leszek & Urbańczyk, Kazimierz & Tarkowski, Radosław, 2022. "Assessment of the potential for underground hydrogen storage in salt domes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
- Li, Yi & Liu, Yaning & Li, Yi & Hu, Bin & Gai, Peng, 2023. "Potential influences of leakage through a high permeability path on shallow aquifers in compressed air energy storage in aquifers," Renewable Energy, Elsevier, vol. 209(C), pages 661-676.
- Gasanzade, Firdovsi & Pfeiffer, Wolf Tilmann & Witte, Francesco & Tuschy, Ilja & Bauer, Sebastian, 2021. "Subsurface renewable energy storage capacity for hydrogen, methane and compressed air – A performance assessment study from the North German Basin," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
- Carlos V. Miguel & Adélio Mendes & Luís M. Madeira, 2018. "An Overview of the Portuguese Energy Sector and Perspectives for Power-to-Gas Implementation," Energies, MDPI, vol. 11(12), pages 1-20, November.
- Reinhard Madlener & Jan Martin Specht, 2020. "An Exploratory Economic Analysis of Underground Pumped-Storage Hydro Power Plants in Abandoned Deep Coal Mines," Energies, MDPI, vol. 13(21), pages 1-22, October.
- Catarina R. Matos & Júlio F. Carneiro & Patrícia Pereira da Silva & Carla O. Henriques, 2021. "A GIS-MCDA Approach Addressing Economic-Social-Environmental Concerns for Selecting the Most Suitable Compressed Air Energy Storage Reservoirs," Energies, MDPI, vol. 14(20), pages 1-22, October.
- Li, Yi & Liu, Yaning & Hu, Bin & Li, Yi & Dong, Jiawei, 2020. "Numerical investigation of a novel approach to coupling compressed air energy storage in aquifers with geothermal energy," Applied Energy, Elsevier, vol. 279(C).
- Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
- Matos, Catarina R. & Pereira da Silva, Patrícia & Carneiro, Júlio F., 2023. "Economic assessment for compressed air energy storage business model alternatives," Applied Energy, Elsevier, vol. 329(C).
- Tarkowski, Radosław & Lankof, Leszek & Luboń, Katarzyna & Michalski, Jan, 2024. "Hydrogen storage capacity of salt caverns and deep aquifers versus demand for hydrogen storage: A case study of Poland," Applied Energy, Elsevier, vol. 355(C).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zhang, Han & Wang, Liang & Lin, Xipeng & Chen, Haisheng, 2020. "Combined cooling, heating, and power generation performance of pumped thermal electricity storage system based on Brayton cycle," Applied Energy, Elsevier, vol. 278(C).
- Bossink, Bart A.G., 2017. "Demonstrating sustainable energy: A review based model of sustainable energy demonstration projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1349-1362.
- Meng, Hui & Wang, Meihong & Olumayegun, Olumide & Luo, Xiaobo & Liu, Xiaoyan, 2019. "Process design, operation and economic evaluation of compressed air energy storage (CAES) for wind power through modelling and simulation," Renewable Energy, Elsevier, vol. 136(C), pages 923-936.
- Hani Alshahrani & Noman Islam & Darakhshan Syed & Adel Sulaiman & Mana Saleh Al Reshan & Khairan Rajab & Asadullah Shaikh & Jaweed Shuja-Uddin & Aadar Soomro, 2023. "Sustainability in Blockchain: A Systematic Literature Review on Scalability and Power Consumption Issues," Energies, MDPI, vol. 16(3), pages 1-24, February.
- Zhang, Yi & Xu, Yujie & Zhou, Xuezhi & Guo, Huan & Zhang, Xinjing & Chen, Haisheng, 2019. "Compressed air energy storage system with variable configuration for accommodating large-amplitude wind power fluctuation," Applied Energy, Elsevier, vol. 239(C), pages 957-968.
- Cui, Shuangshuang & Song, Jintao & Wang, Tingting & Liu, Yixue & He, Qing & Liu, Wenyi, 2021. "Thermodynamic analysis and efficiency assessment of a novel multi-generation liquid air energy storage system," Energy, Elsevier, vol. 235(C).
- Dib, Ghady & Haberschill, Philippe & Rullière, Romuald & Perroit, Quentin & Davies, Simon & Revellin, Rémi, 2020. "Thermodynamic simulation of a micro advanced adiabatic compressed air energy storage for building application," Applied Energy, Elsevier, vol. 260(C).
- Leszczyński, Jacek S. & Gryboś, Dominik & Markowski, Jan, 2023. "Analysis of optimal expansion dynamics in a reciprocating drive for a micro-CAES production system," Applied Energy, Elsevier, vol. 350(C).
- Benato, Alberto, 2017. "Performance and cost evaluation of an innovative Pumped Thermal Electricity Storage power system," Energy, Elsevier, vol. 138(C), pages 419-436.
- Li, Ruixiong & Wang, Huanran & Zhang, Haoran, 2019. "Dynamic simulation of a cooling, heating and power system based on adiabatic compressed air energy storage," Renewable Energy, Elsevier, vol. 138(C), pages 326-339.
- Ren, Guorui & Liu, Jinfu & Wan, Jie & Guo, Yufeng & Yu, Daren, 2017. "Overview of wind power intermittency: Impacts, measurements, and mitigation solutions," Applied Energy, Elsevier, vol. 204(C), pages 47-65.
- Frate, Guido Francesco & Ferrari, Lorenzo & Desideri, Umberto, 2021. "Energy storage for grid-scale applications: Technology review and economic feasibility analysis," Renewable Energy, Elsevier, vol. 163(C), pages 1754-1772.
- Ali, Shahid & Stewart, Rodney A. & Sahin, Oz & Vieira, Abel Silva, 2023. "Integrated GIS-AHP-based approach for off-river pumped hydro energy storage site selection," Applied Energy, Elsevier, vol. 337(C).
- Han, Ji & Miao, Shihong & Chen, Zhe & Liu, Zhou & Li, Yaowang & Yang, Weichen & Liu, Ziwen, 2021. "Multi-View clustering and discrete consensus based tri-level coordinated control of wind farm and adiabatic compressed air energy storage for providing frequency regulation service," Applied Energy, Elsevier, vol. 304(C).
- Xiong, Yaxuan & An, Shuo & Xu, Peng & Ding, Yulong & Li, Chuan & Zhang, Qunli & Chen, Hongbing, 2018. "A novel expander-depending natural gas pressure regulation configuration: Performance analysis," Applied Energy, Elsevier, vol. 220(C), pages 21-35.
- Peng, Hao & Yang, Yu & Li, Rui & Ling, Xiang, 2016. "Thermodynamic analysis of an improved adiabatic compressed air energy storage system," Applied Energy, Elsevier, vol. 183(C), pages 1361-1373.
- Guo, Chaobin & Li, Cai & Zhang, Keni & Cai, Zuansi & Ma, Tianran & Maggi, Federico & Gan, Yixiang & El-Zein, Abbas & Pan, Zhejun & Shen, Luming, 2021. "The promise and challenges of utility-scale compressed air energy storage in aquifers," Applied Energy, Elsevier, vol. 286(C).
- Dahui Yang & Xiankui Wen & Jingliang Zhong & Tingyong Feng & Tongtian Deng & Xiang Li, 2023. "Compressed Air Energy Storage System with Burner and Ejector," Energies, MDPI, vol. 16(1), pages 1-16, January.
- Emiliano Borri & Alessio Tafone & Gabriele Comodi & Alessandro Romagnoli & Luisa F. Cabeza, 2022. "Compressed Air Energy Storage—An Overview of Research Trends and Gaps through a Bibliometric Analysis," Energies, MDPI, vol. 15(20), pages 1-21, October.
- Xu, Ying & Ren, Li & Zhang, Zhongping & Tang, Yuejin & Shi, Jing & Xu, Chen & Li, Jingdong & Pu, Dongsheng & Wang, Zhuang & Liu, Huajun & Chen, Lei, 2018. "Analysis of the loss and thermal characteristics of a SMES (Superconducting Magnetic Energy Storage) magnet with three practical operating conditions," Energy, Elsevier, vol. 143(C), pages 372-384.
More about this item
Keywords
Energy storage; Renewable Energy Sources; Geological reservoirs; Portugal;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:99:y:2019:i:c:p:201-211. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.