IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v94y2018icp143-153.html
   My bibliography  Save this article

Efficiency and acceptance angle of High Concentrator Photovoltaic modules: Current status and indoor measurements

Author

Listed:
  • Pérez-Higueras, Pedro
  • Ferrer-Rodríguez, Juan P.
  • Almonacid, Florencia
  • Fernández, Eduardo F.

Abstract

High Concentrator Photovoltaic (HCPV) modules (with concentrations higher than 300 times) have increased their conversion efficiency records up to more than 43% in the last years. This represents the maximum conversion efficiency by any type of photovoltaic (PV) module. Moreover, HCPV modules still have a theoretical potential for a significant efficiency growth. This work analyses the current status of efficiency records of HCPV modules and their evolution in the last 20 years, as well as the most efficient commercial HCPV modules, these last with up to around 34% efficiency nowadays. It is found that the efficiency growth of HCPV modules in the last years is considerably greater than that of other PV technologies like crystalline silicon (c-Si) or Thin Film. The values of efficiency, acceptance angle, geometrical concentration and power of current HCPV modules are gathered. Current efficiency values are typically centred in the range between 27% and 33%, whereas the current average of acceptance angle values is ± 0.9°. Regarding the geometrical concentration of the efficiency record HCPV modules, it is typically lower than 400× whereas current commercial HCPV modules work in the range of 500–1000×. Moreover, a total of 24 commercial HCPV modules were characterised indoors at the CPV solar simulator at the University of Jaén in order to compare the datasheets with the experimental data. The measurement results, including the efficiency and acceptance angle characteristics, are presented and compared with datasheet values.

Suggested Citation

  • Pérez-Higueras, Pedro & Ferrer-Rodríguez, Juan P. & Almonacid, Florencia & Fernández, Eduardo F., 2018. "Efficiency and acceptance angle of High Concentrator Photovoltaic modules: Current status and indoor measurements," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 143-153.
  • Handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:143-153
    DOI: 10.1016/j.rser.2018.06.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118304453
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.06.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pérez-Higueras, P. & Muñoz, E. & Almonacid, G. & Vidal, P.G., 2011. "High Concentrator PhotoVoltaics efficiencies: Present status and forecast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1810-1815, May.
    2. Talavera, D.L. & Pérez-Higueras, P. & Almonacid, F. & Fernández, E.F., 2017. "A worldwide assessment of economic feasibility of HCPV power plants: Profitability and competitiveness," Energy, Elsevier, vol. 119(C), pages 408-424.
    3. Rodrigo, P. & Fernández, E.F. & Almonacid, F. & Pérez-Higueras, P.J., 2014. "Review of methods for the calculation of cell temperature in high concentration photovoltaic modules for electrical characterization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 478-488.
    4. Shanks, Katie & Senthilarasu, S. & Mallick, Tapas K., 2016. "Optics for concentrating photovoltaics: Trends, limits and opportunities for materials and design," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 394-407.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Aqachmar, Zineb & Campana, Pietro Elia & Bouhal, Tarik & El Qarnia, Hamid & Outzourhit, Abdelkader & Alami Ibnouelghazi, El & Mouak, Said & Aqachmar, Atman, 2022. "Electrification of Africa through CPV installations in small-scale industrial applications: Energetic, economic, and environmental analysis," Renewable Energy, Elsevier, vol. 197(C), pages 723-746.
    2. Hoang Vu & Tran Quoc Tien & Jongbin Park & Meeryoung Cho & Ngoc Hai Vu & Seoyong Shin, 2022. "Waveguide Concentrator Photovoltaic with Spectral Splitting for Dual Land Use," Energies, MDPI, vol. 15(6), pages 1-14, March.
    3. Andrea Salimbeni & Mario Porru & Luca Massidda & Alfonso Damiano, 2020. "A Forecasting-Based Control Algorithm for Improving Energy Managment in High Concentrator Photovoltaic Power Plant Integrated with Energy Storage Systems," Energies, MDPI, vol. 13(18), pages 1-20, September.
    4. Fernandez, Eduardo F. & Chemisana, Daniel & Micheli, Leonardo & Almonacid, Florencia, 2019. "Spectral nature of soiling and its impact on multi-junction based concentrator systems," MPRA Paper 106251, University Library of Munich, Germany.
    5. Maria A. Ceballos & Pedro J. Pérez-Higueras & Eduardo F. Fernández & Florencia Almonacid, 2023. "Tracking-Integrated CPV Technology: State-of-the-Art and Classification," Energies, MDPI, vol. 16(15), pages 1-15, July.
    6. Cameron, William James & Reddy, K. Srinivas & Mallick, Tapas Kumar, 2022. "Review of high concentration photovoltaic thermal hybrid systems for highly efficient energy cogeneration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    7. Rodrigo, P.M. & Talavera, D.L. & Fernández, E.F. & Almonacid, F.M. & Pérez-Higueras, P.J., 2019. "Optimum capacity of the inverters in concentrator photovoltaic power plants with emphasis on shading impact," Energy, Elsevier, vol. 187(C).
    8. Moreno, A. & Chemisana, D. & Fernández, E.F., 2021. "Hybrid high-concentration photovoltaic-thermal solar systems for building applications," Applied Energy, Elsevier, vol. 304(C).
    9. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    10. Juan P. Ferrer-Rodríguez & Alvaro Valera & Eduardo F. Fernández & Florencia Almonacid & Pedro Pérez-Higueras, 2018. "Ray Tracing Comparison between Triple-Junction and Four-Junction Solar Cells in PMMA Fresnel-Based High-CPV Units," Energies, MDPI, vol. 11(9), pages 1-11, September.
    11. Saura, José M. & Chemisana, Daniel & Rodrigo, Pedro M. & Almonacid, Florencia M. & Fernández, Eduardo F., 2022. "Effect of non-uniformity on concentrator multi-junction solar cells equipped with refractive secondary optics under shading conditions," Energy, Elsevier, vol. 238(PC).
    12. Rodrigo, P.M. & Valera, A. & Fernández, E.F. & Almonacid, F.M., 2019. "Performance and economic limits of passively cooled hybrid thermoelectric generator-concentrator photovoltaic modules," Applied Energy, Elsevier, vol. 238(C), pages 1150-1162.
    13. Bushra, Nayab & Hartmann, Timo, 2019. "A review of state-of-the-art reflective two-stage solar concentrators: Technology categorization and research trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Guiqiang & Xuan, Qingdong & Pei, Gang & Su, Yuehong & Ji, Jie, 2018. "Effect of non-uniform illumination and temperature distribution on concentrating solar cell - A review," Energy, Elsevier, vol. 144(C), pages 1119-1136.
    2. Rodrigo, Pedro M. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, Florencia M. & Lay-Ekuakille, Aimé, 2018. "A method for the outdoor thermal characterisation of high-concentrator photovoltaic modules alternative to the IEC 62670-3 standard," Energy, Elsevier, vol. 148(C), pages 159-168.
    3. Almonacid, Florencia & Fernandez, Eduardo F. & Mellit, Adel & Kalogirou, Soteris, 2017. "Review of techniques based on artificial neural networks for the electrical characterization of concentrator photovoltaic technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 938-953.
    4. Rodrigo, P. & Gutiérrez, S. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2015. "A methodology for the electrical characterization of shaded high concentrator photovoltaic modules," Energy, Elsevier, vol. 89(C), pages 768-777.
    5. Fernández, Eduardo F. & Pérez-Higueras, P. & Almonacid, F. & Ruiz-Arias, J.A. & Rodrigo, P. & Fernandez, J.I. & Luque-Heredia, I., 2015. "Model for estimating the energy yield of a high concentrator photovoltaic system," Energy, Elsevier, vol. 87(C), pages 77-85.
    6. Fernández, Eduardo F. & Almonacid, Florencia & Soria-Moya, Alberto & Terrados, Julio, 2015. "Experimental analysis of the spectral factor for quantifying the spectral influence on concentrator photovoltaic systems under real operating conditions," Energy, Elsevier, vol. 90(P2), pages 1878-1886.
    7. Manuel Angel Gadeo-Martos & Antonio Jesús Yuste-Delgado & Florencia Almonacid Cruz & Jose-Angel Fernandez-Prieto & Joaquin Canada-Bago, 2019. "Modeling a High Concentrator Photovoltaic Module Using Fuzzy Rule-Based Systems," Energies, MDPI, vol. 12(3), pages 1-22, February.
    8. Sato, Daisuke & Yamagata, Yuki & Hirata, Kenji & Yamada, Noboru, 2020. "Mathematical power-generation model of a four-terminal partial concentrator photovoltaic module for optimal sun-tracking strategy," Energy, Elsevier, vol. 213(C).
    9. Amanlou, Yasaman & Hashjin, Teymour Tavakoli & Ghobadian, Barat & Najafi, G. & Mamat, R., 2016. "A comprehensive review of Uniform Solar Illumination at Low Concentration Photovoltaic (LCPV) Systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1430-1441.
    10. Rodrigo, P. & Velázquez, Ramiro & Fernández, Eduardo F. & Almonacid, F. & Pérez-Higueras, P.J., 2016. "Analysis of electrical mismatches in high-concentrator photovoltaic power plants with distributed inverter configurations," Energy, Elsevier, vol. 107(C), pages 374-387.
    11. Almonacid, F. & Fernández, E.F. & Mallick, T.K. & Pérez-Higueras, P.J., 2015. "High concentrator photovoltaic module simulation by neuronal networks using spectrally corrected direct normal irradiance and cell temperature," Energy, Elsevier, vol. 84(C), pages 336-343.
    12. Yaser I. Alamin & Mensah K. Anaty & José Domingo Álvarez Hervás & Khalid Bouziane & Manuel Pérez García & Reda Yaagoubi & María del Mar Castilla & Merouan Belkasmi & Mohammed Aggour, 2020. "Very Short-Term Power Forecasting of High Concentrator Photovoltaic Power Facility by Implementing Artificial Neural Network," Energies, MDPI, vol. 13(13), pages 1-16, July.
    13. Fernández, Eduardo F. & Talavera, D.L. & Almonacid, Florencia M. & Smestad, Greg P., 2016. "Investigating the impact of weather variables on the energy yield and cost of energy of grid-connected solar concentrator systems," Energy, Elsevier, vol. 106(C), pages 790-801.
    14. Przemyslaw Zawadzki & Firdaus Muhammad-Sukki & Siti Hawa Abu-Bakar & Nurul Aini Bani & Abdullahi Abubakar Mas’ud & Jorge Alfredo Ardila-Rey & Abu Bakar Munir, 2020. "Life Cycle Assessment of a Rotationally Asymmetrical Compound Parabolic Concentrator (RACPC)," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    15. Datas, A. & Linares, P.G., 2017. "Monolithic interconnected modules (MIM) for high irradiance photovoltaic energy conversion: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 477-495.
    16. Almonacid, Florencia & Rodrigo, Pedro & Fernández, Eduardo F., 2016. "Determination of the current–voltage characteristics of concentrator systems by using different adapted conventional techniques," Energy, Elsevier, vol. 101(C), pages 146-160.
    17. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    18. Badr, Farouk & Radwan, Ali & Ahmed, Mahmoud & Hamed, Ahmed M., 2022. "An experimental study of the concentrator photovoltaic/thermoelectric generator performance using different passive cooling methods," Renewable Energy, Elsevier, vol. 185(C), pages 1078-1094.
    19. Freier, Daria & Ramirez-Iniguez, Roberto & Jafry, Tahseen & Muhammad-Sukki, Firdaus & Gamio, Carlos, 2018. "A review of optical concentrators for portable solar photovoltaic systems for developing countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 957-968.
    20. Renzi, Massimiliano & Cioccolanti, Luca & Barazza, Giorgio & Egidi, Lorenzo & Comodi, Gabriele, 2017. "Design and experimental test of refractive secondary optics on the electrical performance of a 3-junction cell used in CPV systems," Applied Energy, Elsevier, vol. 185(P1), pages 233-243.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:94:y:2018:i:c:p:143-153. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.