IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v91y2018icp802-811.html
   My bibliography  Save this article

Probabilistic assessment of concentrated solar power plants yield: The EVA methodology

Author

Listed:
  • Fernández-Peruchena, Carlos M.
  • Vignola, Frank
  • Gastón, Martín
  • Lara-Fanego, Vicente
  • Ramírez, Lourdes
  • Zarzalejo, Luis
  • Silva, Manuel
  • Pavón, Manuel
  • Moreno, Sara
  • Bermejo, Diego
  • Pulgar, Jesús
  • Macias, Sergio
  • Valenzuela, Rita X.

Abstract

Understanding the long-term temporal variability of solar resource is fundamental in any assessment of solar energy potential. The variability of the solar resource (as shown by historical solar data) plays a significant role in the statistical description of the future performance of a solar power plant, thus influencing its financing conditions. In particular, solar-power financing is mainly based on a statistical quantification of the solar resource. In this work, a methodology for generating meteorological years representative of a given annual probability of exceedance of solar irradiation is presented, which can be used as input in risk assessment for securing competitive financing for Concentrating Solar Thermal Power (CSTP) projects. This methodology, which has been named EVA, is based on the variability and seasonality of monthly Direct Normal solar Irradiation (DNI) values and uses as boundary condition the annual DNI value representative for a given probability of exceedance. The results are validated against a 34-year series of net energy yield calculated at hourly intervals from measured solar irradiance data and meteorological, and they are also supplemented with the analysis of uncertainty associated to the probabilities of exceedance estimates. Relations between DNI and CSTP energy yields at different time scales are also analyzed and discussed.

Suggested Citation

  • Fernández-Peruchena, Carlos M. & Vignola, Frank & Gastón, Martín & Lara-Fanego, Vicente & Ramírez, Lourdes & Zarzalejo, Luis & Silva, Manuel & Pavón, Manuel & Moreno, Sara & Bermejo, Diego & Pulgar, J, 2018. "Probabilistic assessment of concentrated solar power plants yield: The EVA methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 802-811.
  • Handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:802-811
    DOI: 10.1016/j.rser.2018.03.018
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118301059
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.018?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, Jibran & Arsalan, Mudassar H., 2016. "Solar power technologies for sustainable electricity generation – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 414-425.
    2. Atkins, Martin J. & Walmsley, Michael R.W. & Morrison, Andrew S., 2010. "Integration of solar thermal for improved energy efficiency in low-temperature-pinch industrial processes," Energy, Elsevier, vol. 35(5), pages 1867-1873.
    3. Elisha B. Babatunde (ed.), 2012. "Solar Radiation," Books, IntechOpen, number 2039, January-J.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Carvalho, Diego B. & Pinto, Bárbara L. & Guardia, Eduardo C. & Marangon Lima, José W., 2020. "Economic impact of anticipations or delays in the completion of power generation projects in the Brazilian energy market," Renewable Energy, Elsevier, vol. 147(P1), pages 1312-1320.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Varbanov, Petar Sabev & Fodor, Zsófia & Klemeš, Jiří Jaromír, 2012. "Total Site targeting with process specific minimum temperature difference (ΔTmin)," Energy, Elsevier, vol. 44(1), pages 20-28.
    2. Gómez-Villarejo, Roberto & Martín, Elisa I. & Navas, Javier & Sánchez-Coronilla, Antonio & Aguilar, Teresa & Gallardo, Juan Jesús & Alcántara, Rodrigo & De los Santos, Desiré & Carrillo-Berdugo, Iván , 2017. "Ag-based nanofluidic system to enhance heat transfer fluids for concentrating solar power: Nano-level insights," Applied Energy, Elsevier, vol. 194(C), pages 19-29.
    3. Díaz, F. & Montero, G. & Escobar, J.M. & Rodríguez, E. & Montenegro, R., 2015. "A new predictive solar radiation numerical model," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 596-603.
    4. Gutiérrez-Alvarez, R. & Guerra, K. & Haro, P., 2023. "Market profitability of CSP-biomass hybrid power plants: Towards a firm supply of renewable energy," Applied Energy, Elsevier, vol. 335(C).
    5. Assadi, Mohammad Reza & Ataebi, Melikasadat & Ataebi, Elmira sadat & Hasani, Aliakbar, 2022. "Prioritization of renewable energy resources based on sustainable management approach using simultaneous evaluation of criteria and alternatives: A case study on Iran's electricity industry," Renewable Energy, Elsevier, vol. 181(C), pages 820-832.
    6. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    7. Nahin Tasmin & Shahjadi Hisan Farjana & Md Rashed Hossain & Santu Golder & M. A. Parvez Mahmud, 2022. "Integration of Solar Process Heat in Industries: A Review," Clean Technol., MDPI, vol. 4(1), pages 1-35, February.
    8. Ahsan, Syed M. & Khan, Hassan A. & Hassan, Naveed-ul & Arif, Syed M. & Lie, Tek-Tjing, 2020. "Optimized power dispatch for solar photovoltaic-storage system with multiple buildings in bilateral contracts," Applied Energy, Elsevier, vol. 273(C).
    9. Calvin Kong Leng Sing & Jeng Shiun Lim & Timothy Gordon Walmsley & Peng Yen Liew & Masafumi Goto & Sheikh Ahmad Zaki Bin Shaikh Salim, 2020. "Time-Dependent Integration of Solar Thermal Technology in Industrial Processes," Sustainability, MDPI, vol. 12(6), pages 1-32, March.
    10. Lidia Lombardi & Barbara Mendecka & Simone Fabrizi, 2020. "Solar Integrated Anaerobic Digester: Energy Savings and Economics," Energies, MDPI, vol. 13(17), pages 1-16, August.
    11. Li, Wenjia & Ling, Yunyi & Liu, Xiangxin & Hao, Yong, 2017. "Performance analysis of a photovoltaic-thermochemical hybrid system prototype," Applied Energy, Elsevier, vol. 204(C), pages 939-947.
    12. Yang, Honglun & Wang, Qiliang & Zhong, Shuai & Kwan, Trevor Hocksun & Feng, Junsheng & Cao, Jingyu & Pei, Gang, 2020. "Spectral-spatial design and coupling analysis of the parabolic trough receiver," Applied Energy, Elsevier, vol. 264(C).
    13. Wallerand, Anna S. & Kermani, Maziar & Voillat, Régis & Kantor, Ivan & Maréchal, François, 2018. "Optimal design of solar-assisted industrial processes considering heat pumping: Case study of a dairy," Renewable Energy, Elsevier, vol. 128(PB), pages 565-585.
    14. Walmsley, Timothy G. & Walmsley, Michael R.W. & Atkins, Martin J. & Neale, James R., 2014. "Integration of industrial solar and gaseous waste heat into heat recovery loops using constant and variable temperature storage," Energy, Elsevier, vol. 75(C), pages 53-67.
    15. Wang, Kai & Pantaleo, Antonio M. & Herrando, María & Faccia, Michele & Pesmazoglou, Ioannis & Franchetti, Benjamin M. & Markides, Christos N., 2020. "Spectral-splitting hybrid PV-thermal (PVT) systems for combined heat and power provision to dairy farms," Renewable Energy, Elsevier, vol. 159(C), pages 1047-1065.
    16. Kumar, Manish & Kumar, Arun, 2017. "Performance assessment and degradation analysis of solar photovoltaic technologies: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 554-587.
    17. Oleg Lugovoy & Varun Jyothiprakash & Sourish Chatterjee & Samridh Sharma & Arijit Mukherjee & Abhishek Das & Shreya Some & Disha L. Dinesha & Nandini Das & Parthaa Bosu & Shyamasree Dasgupta & Lavanya, 2021. "Towards a Zero-Carbon Electricity System for India in 2050: IDEEA Model-Based Scenarios Integrating Wind and Solar Complementarity and Geospatial Endowments," Energies, MDPI, vol. 14(21), pages 1-57, October.
    18. Terrapon-Pfaff, Julia & Fink, Thomas & Viebahn, Peter & Jamea, El Mostafa, 2019. "Social impacts of large-scale solar thermal power plants: Assessment results for the NOORO I power plant in Morocco," Renewable and Sustainable Energy Reviews, Elsevier, vol. 113(C), pages 1-1.
    19. Mohammad K. Najjar & Eduardo Linhares Qualharini & Ahmed W. A. Hammad & Dieter Boer & Assed Haddad, 2019. "Framework for a Systematic Parametric Analysis to Maximize Energy Output of PV Modules Using an Experimental Design," Sustainability, MDPI, vol. 11(10), pages 1-24, May.
    20. Díaz, F. & Montero, H. & Santana, D. & Montero, G. & Rodríguez, E. & Mazorra Aguiar, L. & Oliver, A., 2018. "Improving shadows detection for solar radiation numerical models," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 71-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:802-811. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.