IDEAS home Printed from https://ideas.repec.org/a/eee/apmaco/v267y2015icp596-603.html
   My bibliography  Save this article

A new predictive solar radiation numerical model

Author

Listed:
  • Díaz, F.
  • Montero, G.
  • Escobar, J.M.
  • Rodríguez, E.
  • Montenegro, R.

Abstract

A solar radiation numerical model is presented. With it, the user can estimate the radiation values in any location easily and compute the solar power generation taking into account not only the radiation level, but also the terrain surface conditions considering the cast shadows. The terrain surface is taken into account, using 2-D adaptive meshes of triangles which are constructed using a refinement/derefinement procedure in accordance with the variations of terrain surface and albedo. The model can be used in atmospheric sciences as well as in electrical engineering since it allows the user to find the optimal location for the maximum power generation in photovoltaic or solar thermal power exploitations. For this purpose, the effect of shadows is considered in each time step. Solar radiation is first computed for clear-sky conditions and then, real-sky values are computed daily in terms of the clear-sky index. Maps for clear-sky index are obtained from a spatial interpolation of observational data which are available for each day at several points of the studied zone. Finally, the solar radiation maps of a month are calculated from the daily results. However, for power system management purposes, it is very important to know the amount of energy that a facility can introduce into the grid in a future. That is why a predictive tool has been developed. So, the model can be applied in solar radiation forecasting using a meteorological model. The estimation of daily solar radiation provided by such model is used to adjust the clear sky results and, then, to obtain the real sky radiation.

Suggested Citation

  • Díaz, F. & Montero, G. & Escobar, J.M. & Rodríguez, E. & Montenegro, R., 2015. "A new predictive solar radiation numerical model," Applied Mathematics and Computation, Elsevier, vol. 267(C), pages 596-603.
  • Handle: RePEc:eee:apmaco:v:267:y:2015:i:c:p:596-603
    DOI: 10.1016/j.amc.2015.01.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0096300315000508
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.amc.2015.01.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Elisha B. Babatunde (ed.), 2012. "Solar Radiation," Books, IntechOpen, number 2039, January-J.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Díaz, F. & Montero, H. & Santana, D. & Montero, G. & Rodríguez, E. & Mazorra Aguiar, L. & Oliver, A., 2018. "Improving shadows detection for solar radiation numerical models," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 71-85.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ballestrín, J. & Monterreal, R. & Carra, M.E. & Fernández-Reche, J. & Polo, J. & Enrique, R. & Rodríguez, J. & Casanova, M. & Barbero, F.J. & Alonso-Montesinos, J. & López, G. & Bosch, J.L. & Batlles,, 2018. "Solar extinction measurement system based on digital cameras. Application to solar tower plants," Renewable Energy, Elsevier, vol. 125(C), pages 648-654.
    2. Fernández-Peruchena, Carlos M. & Vignola, Frank & Gastón, Martín & Lara-Fanego, Vicente & Ramírez, Lourdes & Zarzalejo, Luis & Silva, Manuel & Pavón, Manuel & Moreno, Sara & Bermejo, Diego & Pulgar, J, 2018. "Probabilistic assessment of concentrated solar power plants yield: The EVA methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 802-811.
    3. Jafrancesco, David & Cardoso, Joao P. & Mutuberria, Amaia & Leonardi, Erminia & Les, Iñigo & Sansoni, Paola & Francini, Franco & Fontani, Daniela, 2018. "Optical simulation of a central receiver system: Comparison of different software tools," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 792-803.
    4. Díaz, F. & Montero, H. & Santana, D. & Montero, G. & Rodríguez, E. & Mazorra Aguiar, L. & Oliver, A., 2018. "Improving shadows detection for solar radiation numerical models," Applied Mathematics and Computation, Elsevier, vol. 319(C), pages 71-85.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:apmaco:v:267:y:2015:i:c:p:596-603. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: https://www.journals.elsevier.com/applied-mathematics-and-computation .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.