IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v65y2016icp568-576.html
   My bibliography  Save this article

Potential and economic feasibility of solar home systems implementation in Bangladesh

Author

Listed:
  • Halder, P.K.

Abstract

Solar home systems (SHSs) are the real hope for electrification of the off-grid areas in Bangladesh by utilizing the solar energy in renewable and sustainable basis. This paper demonstrates the solar energy prospect, the present status and dissemination schemes of SHSs in off-grid and coastal areas of Bangladesh by several government and Non-government organizations (NGOs). The country has an average daily solar radiation ranges between 4–6.5kWh/m2. Currently, more than 3.8 million SHSs of capacity range 10–135Wp (watt peak) with a total capacity of 150MW have been disseminated in rural and isolated areas in Bangladesh. In this paper, ten case studies of capacity 20Wp, 30Wp and 42Wp were investigated to evaluate economic viability at two randomly selected villages in Sirajgonj district and Jessore district, Bangladesh. The analysis showed that the SHSs for small business enterprise and household with small income generation are economically viable rather than only household lighting.

Suggested Citation

  • Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
  • Handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:568-576
    DOI: 10.1016/j.rser.2016.07.062
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116303902
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.07.062?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chakrabarty, Sayan & Islam, Tawhidul, 2011. "Financial viability and eco-efficiency of the solar home systems (SHS) in Bangladesh," Energy, Elsevier, vol. 36(8), pages 4821-4827.
    2. Rofiqul Islam, M. & Rabiul Islam, M. & Rafiqul Alam Beg, M., 2008. "Renewable energy resources and technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 299-343, February.
    3. Halder, P.K. & Paul, N. & Joardder, M.U.H. & Sarker, M., 2015. "Energy scarcity and potential of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1636-1649.
    4. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    5. Akinyele, Daniel O. & Rayudu, Ramesh K., 2016. "Techno-economic and life cycle environmental performance analyses of a solar photovoltaic microgrid system for developing countries," Energy, Elsevier, vol. 109(C), pages 160-179.
    6. Posorski, R & Bussmann, M & Menke, C, 2003. "Does the use of Solar Home Systems (SHS) contribute to climate protection?," Renewable Energy, Elsevier, vol. 28(7), pages 1061-1080.
    7. Sinha, Sunanda & Chandel, S.S., 2015. "Review of recent trends in optimization techniques for solar photovoltaic–wind based hybrid energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 755-769.
    8. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2009. "A wind-PV-battery hybrid power system at Sitakunda in Bangladesh," Energy Policy, Elsevier, vol. 37(9), pages 3659-3664, September.
    9. Asif, Muhammad & Barua, Dipal, 2011. "Salient features of the Grameen Shakti renewable energy program," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 5063-5067.
    10. Ghafoor, Abdul & Munir, Anjum, 2015. "Design and economics analysis of an off-grid PV system for household electrification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 496-502.
    11. Asrari, Arash & Ghasemi, Abolfazl & Javidi, Mohammad Hossein, 2012. "Economic evaluation of hybrid renewable energy systems for rural electrification in Iran—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 3123-3130.
    12. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2010. "Prospect of wind–PV-battery hybrid power system as an alternative to grid extension in Bangladesh," Energy, Elsevier, vol. 35(7), pages 3040-3047.
    13. Samad, Hussain A. & Khandk, Shahidur R. & Asaduzzaman, M. & Yunus, Mohammad, 2013. "The benefits of solar home systems :an analysis from Bangladesh," Policy Research Working Paper Series 6724, The World Bank.
    14. Kumar Nandi, Sanjoy & Ranjan Ghosh, Himangshu, 2010. "Techno-economical analysis of off-grid hybrid systems at Kutubdia Island, Bangladesh," Energy Policy, Elsevier, vol. 38(2), pages 976-980, February.
    15. Chauhan, Anurag & Saini, R.P., 2016. "Techno-economic feasibility study on Integrated Renewable Energy System for an isolated community of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 388-405.
    16. Pavlović, Tomislav & Milosavljević, Dragana & Radonjić, Ivana & Pantić, Lana & Radivojević, Aleksandar & Pavlović, Mila, 2013. "Possibility of electricity generation using PV solar plants in Serbia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 201-218.
    17. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    18. Khare, Vikas & Nema, Savita & Baredar, Prashant, 2016. "Solar–wind hybrid renewable energy system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 23-33.
    19. Hossain Mondal, Md. Alam, 2010. "Economic viability of solar home systems: Case study of Bangladesh," Renewable Energy, Elsevier, vol. 35(6), pages 1125-1129.
    20. Kabir, Md. Humayun & Endlicher, Wilfried & Jägermeyr, Jonas, 2010. "Calculation of bright roof-tops for solar PV applications in Dhaka Megacity, Bangladesh," Renewable Energy, Elsevier, vol. 35(8), pages 1760-1764.
    21. Eltawil, Mohamed A. & Zhao, Zhengming, 2013. "MPPT techniques for photovoltaic applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 793-813.
    22. Bhuiyan, M.M.H & Asgar, M.Ali & Mazumder, R.K & Hussain, M, 2000. "Economic evaluation of a stand-alone residential photovoltaic power system in Bangladesh," Renewable Energy, Elsevier, vol. 21(3), pages 403-410.
    23. El Chaar, L. & lamont, L.A. & El Zein, N., 2011. "Review of photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2165-2175, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Acaroğlu, Hakan & Baykul, M. Celalettin, 2018. "Economic guideline about financial utilization of flat-plate solar collectors (FPSCs) for the consumer segment in the city of Eskisehir," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2045-2058.
    2. Sharma, Rohit & Choudhary, Deepak & Shiradkar, Sayli & Kumar, Praveen & Venkateswaran, Jayendran & Solanki, Chetan Singh & Yadama, Gautam N., 2021. "Who is willing to pay for solar lamps in rural India? A longitudinal study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    3. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    4. Jordi Cravioto & Hideaki Ohgaki & Hang Seng Che & ChiaKwang Tan & Satoru Kobayashi & Hla Toe & Bun Long & Eth Oudaya & Nasrudin Abd Rahim & Hooman Farzeneh, 2020. "The Effects of Rural Electrification on Quality of Life: A Southeast Asian Perspective," Energies, MDPI, vol. 13(10), pages 1-28, May.
    5. Peter Horan & Mark B. Luther & Hong Xian Li, 2021. "Guidance on Implementing Renewable Energy Systems in Australian Homes," Energies, MDPI, vol. 14(9), pages 1-24, May.
    6. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    7. Rômulo de Oliveira Azevêdo & Paulo Rotela Junior & Luiz Célio Souza Rocha & Gianfranco Chicco & Giancarlo Aquila & Rogério Santana Peruchi, 2020. "Identification and Analysis of Impact Factors on the Economic Feasibility of Photovoltaic Energy Investments," Sustainability, MDPI, vol. 12(17), pages 1-40, September.
    8. Nematollahi, Omid & Kim, Kyung Chun, 2017. "A feasibility study of solar energy in South Korea," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 566-579.
    9. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    10. Khan, Imran, 2020. "Impacts of energy decentralization viewed through the lens of the energy cultures framework: Solar home systems in the developing economies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 119(C).
    11. Sarker, Swati Anindita & Wang, Shouyang & Adnan, K.M. Mehedi & Sattar, M. Nahid, 2020. "Economic feasibility and determinants of biogas technology adoption: Evidence from Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 123(C).
    12. Sun, Bohan & Gao, Ke & Liu, Shuai & Wei, Qiaoqiao & Wang, Hui, 2023. "Assessing the performance and economic viability of solar home systems: A way forward towards clean energy exploration and consumption," Renewable Energy, Elsevier, vol. 208(C), pages 409-419.
    13. Chhawchharia, Saransch & Sahoo, Sarat Kumar & Balamurugan, M. & Sukchai, Sukruedee & Yanine, Fernando, 2018. "Investigation of wireless power transfer applications with a focus on renewable energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 888-902.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Islam, Md. Tasbirul & Shahir, S.A. & Uddin, T.M. Iftakhar & Saifullah, A.Z.A, 2014. "Current energy scenario and future prospect of renewable energy in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 1074-1088.
    2. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    3. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    4. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    5. Islam, Aminul & Chan, Eng-Seng & Taufiq-Yap, Yun Hin & Mondal, Md. Alam Hossain & Moniruzzaman, M. & Mridha, Moniruzzaman, 2014. "Energy security in Bangladesh perspective—An assessment and implication," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 154-171.
    6. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    7. Komatsu, Satoru & Kaneko, Shinji & Ghosh, Partha Pratim & Morinaga, Akane, 2013. "Determinants of user satisfaction with solar home systems in rural Bangladesh," Energy, Elsevier, vol. 61(C), pages 52-58.
    8. Abhi Chatterjee & Daniel Burmester & Alan Brent & Ramesh Rayudu, 2019. "Research Insights and Knowledge Headways for Developing Remote, Off-Grid Microgrids in Developing Countries," Energies, MDPI, vol. 12(10), pages 1-19, May.
    9. Rahman, Md. Mizanur & Paatero, Jukka V. & Lahdelma, Risto, 2013. "Evaluation of choices for sustainable rural electrification in developing countries: A multicriteria approach," Energy Policy, Elsevier, vol. 59(C), pages 589-599.
    10. Islam, Md Shahinur & Akhter, Ruma & Rahman, Mohammad Ashifur, 2018. "A thorough investigation on hybrid application of biomass gasifier and PV resources to meet energy needs for a northern rural off-grid region of Bangladesh: A potential solution to replicate in rural ," Energy, Elsevier, vol. 145(C), pages 338-355.
    11. Pandey, A.K. & Tyagi, V.V. & Selvaraj, Jeyraj A/L & Rahim, N.A. & Tyagi, S.K., 2016. "Recent advances in solar photovoltaic systems for emerging trends and advanced applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 859-884.
    12. Swati Anindita Sarker & Shouyang Wang & K M Mehedi Adnan & Muhammad Khalid Anser & Zeraibi Ayoub & Thu Hau Ho & Riffat Ara Zannat Tama & Anna Trunina & Md Mahmudul Hoque, 2020. "Economic Viability and Socio-Environmental Impacts of Solar Home Systems for Off-Grid Rural Electrification in Bangladesh," Energies, MDPI, vol. 13(3), pages 1-15, February.
    13. Khan, Ershad Ullah & Martin, Andrew R., 2015. "Optimization of hybrid renewable energy polygeneration system with membrane distillation for rural households in Bangladesh," Energy, Elsevier, vol. 93(P1), pages 1116-1127.
    14. Ridoan Karim & Firdaus Muhammad-Sukki & Mina Hemmati & Md Shah Newaz & Haroon Farooq & Mohd Nabil Muhtazaruddin & Muhammad Zulkipli & Jorge Alfredo Ardila-Rey, 2020. "RETRACTED: Paving towards Strategic Investment Decision: A SWOT Analysis of Renewable Energy in Bangladesh," Sustainability, MDPI, vol. 12(24), pages 1-30, December.
    15. Jung, Jaesung & Villaran, Michael, 2017. "Optimal planning and design of hybrid renewable energy systems for microgrids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 180-191.
    16. Ahmad, Jameel & Imran, Muhammad & Khalid, Abdullah & Iqbal, Waseem & Ashraf, Syed Rehan & Adnan, Muhammad & Ali, Syed Farooq & Khokhar, Khawar Siddique, 2018. "Techno economic analysis of a wind-photovoltaic-biomass hybrid renewable energy system for rural electrification: A case study of Kallar Kahar," Energy, Elsevier, vol. 148(C), pages 208-234.
    17. Mondal, Md. Alam Hossain & Denich, Manfred, 2010. "Assessment of renewable energy resources potential for electricity generation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2401-2413, October.
    18. Alam Hossain Mondal, Md. & Sadrul Islam, A.K.M., 2011. "Potential and viability of grid-connected solar PV system in Bangladesh," Renewable Energy, Elsevier, vol. 36(6), pages 1869-1874.
    19. Hil Baky, Md. Abdullah & Rahman, Md. Mustafizur & Islam, A.K.M. Sadrul, 2017. "Development of renewable energy sector in Bangladesh: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 73(C), pages 1184-1197.
    20. Olatomiwa, Lanre & Mekhilef, Saad & Ismail, M.S. & Moghavvemi, M., 2016. "Energy management strategies in hybrid renewable energy systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 821-835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:65:y:2016:i:c:p:568-576. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.