IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v28y2003i7p1061-1080.html
   My bibliography  Save this article

Does the use of Solar Home Systems (SHS) contribute to climate protection?

Author

Listed:
  • Posorski, R
  • Bussmann, M
  • Menke, C

Abstract

The paper addresses planners and decision-makers in the field of international development cooperation and also institutions concerned with the impacts of project- and technology promotion. The primary aim of the dissemination of Solar Home Systems (SHS) in off grid areas in developing countries is to improve the living conditions of the population in a cost–effective manner. A large-scale dissemination is essential both for significant contributions to development and for climate effectiveness. However, the contribution of SHS to climate protection is disputed. This analysis presents the most important parameters affecting the contribution of SHS to climate protection and quantifies the influence of those parameters. The case considered presupposes the commercial dissemination of SHS. Greenhouse gas (GHG) emissions are affected by the marketing decisions of the supplier of SHS. With regard to the impact on GHG emissions, a comparison is made between traditional lighting with petroleum lamps and the use of dry cell batteries to operate small devices (baseline case) on the one hand and SHSs on the other. The comparison shows GHG savings of around 9 tonnes of CO2 equivalent GHG emissions within a 20-year period of use of one single 50 Wp SHS compared with the baseline case. The result is robust with respect to variations in GHG-affecting variables. Petroleum consumption and dry cell batteries dominate GHG emissions balances to such an extent that scarcely any importance can be attached to GHG emissions from the transportation and manufacture of SHS. Therefore, it is permissible to use simplified GHG inventories which ignore the GHG emissions arising from the transportation and manufacture of SHS. Therefore the conclusion is, if SHS are commercially disseminated and used cost efficiently to substitute kerosene and dry cell batteries they reduce GHG emissions effectively. In that case SHS can make a significant contribution to climate protection by the dissemination of large numbers.

Suggested Citation

  • Posorski, R & Bussmann, M & Menke, C, 2003. "Does the use of Solar Home Systems (SHS) contribute to climate protection?," Renewable Energy, Elsevier, vol. 28(7), pages 1061-1080.
  • Handle: RePEc:eee:renene:v:28:y:2003:i:7:p:1061-1080
    DOI: 10.1016/S0960-1481(02)00056-3
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148102000563
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/S0960-1481(02)00056-3?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mollik, Sazib & Rashid, M.M. & Hasanuzzaman, M. & Karim, M.E. & Hosenuzzaman, M., 2016. "Prospects, progress, policies, and effects of rural electrification in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 553-567.
    2. Chaurey, Akanksha & Kandpal, Tara Chandra, 2010. "Assessment and evaluation of PV based decentralized rural electrification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2266-2278, October.
    3. Judith A. Cherni & Raúl Olalde Font & Lucía Serrano & Felipe Henao & Antonio Urbina, 2016. "Systematic Assessment of Carbon Emissions from Renewable Energy Access to Improve Rural Livelihoods," Energies, MDPI, vol. 9(12), pages 1-19, December.
    4. Chaurey, A. & Kandpal, T.C., 2009. "Carbon abatement potential of solar home systems in India and their cost reduction due to carbon finance," Energy Policy, Elsevier, vol. 37(1), pages 115-125, January.
    5. Atsu, Divine & Agyemang, Emmanuel Okoh & Tsike, Stephen A.K., 2016. "Solar electricity development and policy support in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 792-800.
    6. Fernando Antonanzas-Torres & Javier Antonanzas & Julio Blanco-Fernandez, 2021. "Environmental Impact of Solar Home Systems in Sub-Saharan Africa," Sustainability, MDPI, vol. 13(17), pages 1-19, August.
    7. Chakrabarty, Sayan & Islam, Tawhidul, 2011. "Financial viability and eco-efficiency of the solar home systems (SHS) in Bangladesh," Energy, Elsevier, vol. 36(8), pages 4821-4827.
    8. Lahimer, A.A. & Alghoul, M.A. & Yousif, Fadhil & Razykov, T.M. & Amin, N. & Sopian, K., 2013. "Research and development aspects on decentralized electrification options for rural household," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 314-324.
    9. Halder, P.K., 2016. "Potential and economic feasibility of solar home systems implementation in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 65(C), pages 568-576.
    10. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    11. Parida, Bhubaneswari & Iniyan, S. & Goic, Ranko, 2011. "A review of solar photovoltaic technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(3), pages 1625-1636, April.
    12. Muhammad Abrar Ul Haq & Muhammad Atif Nawaz & Farheen Akram & Vinodh K. Natarajan, 2020. "Theoretical Implications of Renewable Energy using Improved Cooking Stoves for Rural Households," International Journal of Energy Economics and Policy, Econjournals, vol. 10(5), pages 546-554.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:28:y:2003:i:7:p:1061-1080. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.