IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v63y2016icp141-151.html
   My bibliography  Save this article

The performance and analysis of the thermoelectric generator system used in diesel engines

Author

Listed:
  • Temizer, İlker
  • İlkılıç, Cumali

Abstract

Thermoelectric generator (TEG) has drawn significant for the waste heat recovery systems. In this study, a prototype has been developed for the working principle suitable to the thermoelectric generator systems. The exhaust system of diesel engine is used and benefited from the exhaust gas heat to heat the surface. In addition, thermoelectric cooling system is used for the cooling effect that is required under different temperatures. In experiments, internal combustion diesel engines are used in five different engine speeds and two different engine loads for each speed level. Electric connection of the 40-piece thermoelectric modules mounted on the octagon structure made from Aluminium 6061 material is made in series. Performance of TEG systems has been examined in terms of changing speed and engine load. The performance of TEG systems has been examined in terms of changing speed and load in the engine. In the system, with the assistance of fluent programme in the Ansys Workbench 12.0 and at the same time having the Calculating Fluid Dynamic (CFD) programme, the temperature and flow analysis is performed.

Suggested Citation

  • Temizer, İlker & İlkılıç, Cumali, 2016. "The performance and analysis of the thermoelectric generator system used in diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 141-151.
  • Handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:141-151
    DOI: 10.1016/j.rser.2016.04.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116301010
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.04.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Gaowei & Zhou, Jiemin & Huang, Xuezhang, 2011. "Analytical model of parallel thermoelectric generator," Applied Energy, Elsevier, vol. 88(12), pages 5193-5199.
    2. Hsu, Cheng-Ting & Huang, Gia-Yeh & Chu, Hsu-Shen & Yu, Ben & Yao, Da-Jeng, 2011. "An effective Seebeck coefficient obtained by experimental results of a thermoelectric generator module," Applied Energy, Elsevier, vol. 88(12), pages 5173-5179.
    3. Meng, Fankai & Chen, Lingen & Sun, Fengrui, 2011. "A numerical model and comparative investigation of a thermoelectric generator with multi-irreversibilities," Energy, Elsevier, vol. 36(5), pages 3513-3522.
    4. Suter, C. & Jovanovic, Z.R. & Steinfeld, A., 2012. "A 1kWe thermoelectric stack for geothermal power generation – Modeling and geometrical optimization," Applied Energy, Elsevier, vol. 99(C), pages 379-385.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yang, Zhimin & Zhang, Yanchao & Dong, Qingchun & Lin, Jian & Lin, Guoxing & Chen, Jincan, 2018. "Maximum power output and parametric choice criteria of a thermophotovoltaic cell driven by automobile exhaust," Renewable Energy, Elsevier, vol. 121(C), pages 28-35.
    2. Wang, Enhua & Yu, Zhibin & Zhang, Hongguang & Yang, Fubin, 2017. "A regenerative supercritical-subcritical dual-loop organic Rankine cycle system for energy recovery from the waste heat of internal combustion engines," Applied Energy, Elsevier, vol. 190(C), pages 574-590.
    3. Zhu, Sipeng & Zhang, Kun & Deng, Kangyao, 2020. "A review of waste heat recovery from the marine engine with highly efficient bottoming power cycles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    4. Chen, Siyu & Xue, Yejian & Li, Jianming & Zhang, Houcheng & Zhou, Lihua & Li, Yangyang, 2023. "Efficient and geometry-matching two-stage annular thermoelectric generator for tubular solid oxide fuel cell waste heat recovery," Energy, Elsevier, vol. 285(C).
    5. Ali, Haider & Yilbas, Bekir Sami & Al-Sharafi, Abdullah, 2017. "Innovative design of a thermoelectric generator with extended and segmented pin configurations," Applied Energy, Elsevier, vol. 187(C), pages 367-379.
    6. He, Wei & Wang, Shixue & Yue, Like, 2017. "High net power output analysis with changes in exhaust temperature in a thermoelectric generator system," Applied Energy, Elsevier, vol. 196(C), pages 259-267.
    7. Karami Rad, Meysam & Rezania, Alireza & Omid, Mahmoud & Rajabipour, Ali & Rosendahl, Lasse, 2019. "Study on material properties effect for maximization of thermoelectric power generation," Renewable Energy, Elsevier, vol. 138(C), pages 236-242.
    8. He, Zhi-Zhu, 2020. "A coupled electrical-thermal impedance matching model for design optimization of thermoelectric generator," Applied Energy, Elsevier, vol. 269(C).
    9. Zhang, Houcheng & Xu, Haoran & Chen, Bin & Dong, Feifei & Ni, Meng, 2017. "Two-stage thermoelectric generators for waste heat recovery from solid oxide fuel cells," Energy, Elsevier, vol. 132(C), pages 280-288.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kim, Shiho, 2013. "Analysis and modeling of effective temperature differences and electrical parameters of thermoelectric generators," Applied Energy, Elsevier, vol. 102(C), pages 1458-1463.
    2. Wang, Yuchao & Dai, Chuanshan & Wang, Shixue, 2013. "Theoretical analysis of a thermoelectric generator using exhaust gas of vehicles as heat source," Applied Energy, Elsevier, vol. 112(C), pages 1171-1180.
    3. Favarel, Camille & Bédécarrats, Jean-Pierre & Kousksou, Tarik & Champier, Daniel, 2014. "Numerical optimization of the occupancy rate of thermoelectric generators to produce the highest electrical power," Energy, Elsevier, vol. 68(C), pages 104-116.
    4. Sahin, Ahmet Z. & Yilbas, Bekir S., 2013. "Thermodynamic irreversibility and performance characteristics of thermoelectric power generator," Energy, Elsevier, vol. 55(C), pages 899-904.
    5. Lan, Song & Yang, Zhijia & Chen, Rui & Stobart, Richard, 2018. "A dynamic model for thermoelectric generator applied to vehicle waste heat recovery," Applied Energy, Elsevier, vol. 210(C), pages 327-338.
    6. Weng, Chien-Chou & Huang, Mei-Jiau, 2014. "A study of using a thermoelectric generator to harvest energy from a table lamp," Energy, Elsevier, vol. 76(C), pages 788-798.
    7. Shen, Zu-Guo & Wu, Shuang-Ying & Xiao, Lan & Yin, Gang, 2016. "Theoretical modeling of thermoelectric generator with particular emphasis on the effect of side surface heat transfer," Energy, Elsevier, vol. 95(C), pages 367-379.
    8. Park, K. & Lee, G.W., 2013. "Fabrication and thermoelectric power of π-shaped Ca3Co4O9/CaMnO3 modules for renewable energy conversion," Energy, Elsevier, vol. 60(C), pages 87-93.
    9. Massaguer, Eduard & Massaguer, Albert & Pujol, Toni & Gonzalez, Jose Ramon & Montoro, Lino, 2017. "Modelling and analysis of longitudinal thermoelectric energy harvesters considering series-parallel interconnection effect," Energy, Elsevier, vol. 129(C), pages 59-69.
    10. Montecucco, Andrea & Siviter, Jonathan & Knox, Andrew R., 2014. "The effect of temperature mismatch on thermoelectric generators electrically connected in series and parallel," Applied Energy, Elsevier, vol. 123(C), pages 47-54.
    11. Chen, Wei-Hsin & Liao, Chen-Yeh & Hung, Chen-I & Huang, Wei-Lun, 2012. "Experimental study on thermoelectric modules for power generation at various operating conditions," Energy, Elsevier, vol. 45(1), pages 874-881.
    12. Ezzat, M.F. & Dincer, I., 2019. "Development and exergetic assessment of a new hybrid vehicle incorporating gas turbine as powering option," Energy, Elsevier, vol. 170(C), pages 112-119.
    13. Nour Eddine, A. & Chalet, D. & Faure, X. & Aixala, L. & Chessé, P., 2018. "Effect of engine exhaust gas pulsations on the performance of a thermoelectric generator for wasted heat recovery: An experimental and analytical investigation," Energy, Elsevier, vol. 162(C), pages 715-727.
    14. Ding, L.C. & Akbarzadeh, A. & Date, Abhijit, 2016. "Electric power generation via plate type power generation unit from solar pond using thermoelectric cells," Applied Energy, Elsevier, vol. 183(C), pages 61-76.
    15. Lyudmyla Vikhor & Maxim Kotsur, 2023. "Evaluation of Efficiency for Miniscale Thermoelectric Converter under the Influence of Electrical and Thermal Resistance of Contacts," Energies, MDPI, vol. 16(10), pages 1-22, May.
    16. Barry, Matthew & Ying, Justin & Durka, Michael J. & Clifford, Corey E. & Reddy, B.V.K. & Chyu, Minking K., 2016. "Numerical solution of radiation view factors within a thermoelectric device," Energy, Elsevier, vol. 102(C), pages 427-435.
    17. Ge, Ya & Liu, Zhichun & Sun, Henan & Liu, Wei, 2018. "Optimal design of a segmented thermoelectric generator based on three-dimensional numerical simulation and multi-objective genetic algorithm," Energy, Elsevier, vol. 147(C), pages 1060-1069.
    18. Gou, Xiaolong & Ping, Huifeng & Ou, Qiang & Xiao, Heng & Qing, Shaowei, 2015. "A novel thermoelectric generation system with thermal switch," Applied Energy, Elsevier, vol. 160(C), pages 843-852.
    19. Hongkun Lv & Guoneng Li & Youqu Zheng & Jiangen Hu & Jian Li, 2018. "Compact Water-Cooled Thermoelectric Generator (TEG) Based on a Portable Gas Stove," Energies, MDPI, vol. 11(9), pages 1-19, August.
    20. Ye-Qi Zhang & Jiao Sun & Guang-Xu Wang & Tian-Hu Wang, 2022. "Advantage of a Thermoelectric Generator with Hybridization of Segmented Materials and Irregularly Variable Cross-Section Design," Energies, MDPI, vol. 15(8), pages 1-18, April.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:63:y:2016:i:c:p:141-151. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.