IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v56y2016icp272-282.html
   My bibliography  Save this article

Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012

Author

Listed:
  • Ashtine, Masaō
  • Bello, Richard
  • Higuchi, Kaz

Abstract

Patterns and trends in wind speed and wind power over the entire province of Ontario, Canada, and the adjacent Great Lakes and coastal Hudson and James Bays for small wind turbine hub heights (10 and 30m) were analyzed for the period 1980–2012 using the North American Regional Reanalysis (NARR) dataset. Air density, atmospheric pressure, temperature, and the instantaneous u and v components of wind speed at three-hourly intervals, with a grid resolution of 32km were used for estimating wind power. Statistically significant increasing seasonal and annual 33 year trends in wind power predominate over large water bodies like the Great Lakes and eastern James Bay, where ice cover is diminishing. Significant correlations between wind power and decreasing surface albedo corresponding to declining ice-cover, along with increasing instability in the 10–30m surface layer during the fall and winter months were noted over the Great Lakes, particularly over Lake Superior. The trends suggest a continuing potential for increasing offshore electrical wind generation while lake-ice cover continues to decline.

Suggested Citation

  • Ashtine, Masaō & Bello, Richard & Higuchi, Kaz, 2016. "Assessment of wind energy potential over Ontario and Great Lakes using the NARR data: 1980–2012," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 272-282.
  • Handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:272-282
    DOI: 10.1016/j.rser.2015.11.019
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211501271X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.11.019?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pryor, S.C. & Barthelmie, R.J., 2010. "Climate change impacts on wind energy: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 430-437, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Jiale & Yu, Xiong (Bill), 2018. "Onshore and offshore wind energy potential assessment near Lake Erie shoreline: A spatial and temporal analysis," Energy, Elsevier, vol. 147(C), pages 1092-1107.
    2. Ismail Kamdar & Shahid Ali & Juntakan Taweekun & Hafiz Muhammad Ali, 2021. "Wind Farm Site Selection Using WAsP Tool for Application in the Tropical Region," Sustainability, MDPI, vol. 13(24), pages 1-25, December.
    3. Boudia, Sidi Mohammed & Santos, João Andrade, 2019. "Assessment of large-scale wind resource features in Algeria," Energy, Elsevier, vol. 189(C).
    4. Akintayo Temiloluwa Abolude & Wen Zhou, 2018. "Assessment and Performance Evaluation of a Wind Turbine Power Output," Energies, MDPI, vol. 11(8), pages 1-15, August.
    5. Ali Mostafaeipour & Mostafa Rezaei & Mehdi Jahangiri & Mojtaba Qolipour, 2020. "Feasibility analysis of a new tree-shaped wind turbine for urban application: A case study," Energy & Environment, , vol. 31(7), pages 1230-1256, November.
    6. Ulazia, Alain & Sáenz, Jon & Ibarra-Berastegi, Gabriel & González-Rojí, Santos J. & Carreno-Madinabeitia, Sheila, 2019. "Global estimations of wind energy potential considering seasonal air density changes," Energy, Elsevier, vol. 187(C).
    7. Langodan, Sabique & Viswanadhapalli, Yesubabu & Dasari, Hari Prasad & Knio, Omar & Hoteit, Ibrahim, 2016. "A high-resolution assessment of wind and wave energy potentials in the Red Sea," Applied Energy, Elsevier, vol. 181(C), pages 244-255.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Spittler, Nathalie & Davidsdottir, Brynhildur & Shafiei, Ehsan & Diemer, Arnaud, 2021. "Implications of renewable resource dynamics for energy system planning: The case of geothermal and hydropower in Kenya," Energy Policy, Elsevier, vol. 150(C).
    2. Roux, Charlotte & Schalbart, Patrick & Assoumou, Edi & Peuportier, Bruno, 2016. "Integrating climate change and energy mix scenarios in LCA of buildings and districts," Applied Energy, Elsevier, vol. 184(C), pages 619-629.
    3. Lucy Cradden & Gareth Harrison & John Chick, 2012. "Will climate change impact on wind power development in the UK?," Climatic Change, Springer, vol. 115(3), pages 837-852, December.
    4. Gonçalves-Ageitos, María & Barrera-Escoda, Antoni & Baldasano, Jose M. & Cunillera, Jordi, 2015. "Modelling wind resources in climate change scenarios in complex terrains," Renewable Energy, Elsevier, vol. 76(C), pages 670-678.
    5. Wang, Bing & Ke, Ruo-Yu & Yuan, Xiao-Chen & Wei, Yi-Ming, 2014. "China׳s regional assessment of renewable energy vulnerability to climate change," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 185-195.
    6. Burnett, Dougal & Barbour, Edward & Harrison, Gareth P., 2014. "The UK solar energy resource and the impact of climate change," Renewable Energy, Elsevier, vol. 71(C), pages 333-343.
    7. Huber, Matthias & Dimkova, Desislava & Hamacher, Thomas, 2014. "Integration of wind and solar power in Europe: Assessment of flexibility requirements," Energy, Elsevier, vol. 69(C), pages 236-246.
    8. Yasir Ahmed Solangi & Qingmei Tan & Muhammad Waris Ali Khan & Nayyar Hussain Mirjat & Ifzal Ahmed, 2018. "The Selection of Wind Power Project Location in the Southeastern Corridor of Pakistan: A Factor Analysis, AHP, and Fuzzy-TOPSIS Application," Energies, MDPI, vol. 11(8), pages 1-26, July.
    9. Alonzo, Bastien & Ringkjob, Hans-Kristian & Jourdier, Benedicte & Drobinski, Philippe & Plougonven, Riwal & Tankov, Peter, 2017. "Modelling the variability of the wind energy resource on monthly and seasonal timescales," Renewable Energy, Elsevier, vol. 113(C), pages 1434-1446.
    10. Jerez, S. & Thais, F. & Tobin, I. & Wild, M. & Colette, A. & Yiou, P. & Vautard, R., 2015. "The CLIMIX model: A tool to create and evaluate spatially-resolved scenarios of photovoltaic and wind power development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1-15.
    11. Huo, Dongxia & Bagadeem, Salim & Elsherazy, Tarek Abbas & Nasnodkar, Siddhesh Prabhu & Kalra, Akash, 2023. "Renewable energy consumption and the rising effect of climate policy uncertainty: Fresh policy analysis from China," Economic Analysis and Policy, Elsevier, vol. 80(C), pages 1459-1474.
    12. Fant, Charles & Gunturu, Bhaskar & Schlosser, Adam, 2016. "Characterizing wind power resource reliability in southern Africa," Applied Energy, Elsevier, vol. 161(C), pages 565-573.
    13. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    14. Katopodis, Theodoros & Markantonis, Iason & Vlachogiannis, Diamando & Politi, Nadia & Sfetsos, Athanasios, 2021. "Assessing climate change impacts on wind characteristics in Greece through high resolution regional climate modelling," Renewable Energy, Elsevier, vol. 179(C), pages 427-444.
    15. Koletsis, I. & Kotroni, V. & Lagouvardos, K. & Soukissian, T., 2016. "Assessment of offshore wind speed and power potential over the Mediterranean and the Black Seas under future climate changes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 234-245.
    16. André Claro & João A. Santos & David Carvalho, 2023. "Assessing the Future wind Energy Potential in Portugal Using a CMIP6 Model Ensemble and WRF High-Resolution Simulations," Energies, MDPI, vol. 16(2), pages 1-19, January.
    17. Miguel Á. Rodríguez-López & Emilio Cerdá & Pablo del Rio, 2020. "Modeling Wind-Turbine Power Curves: Effects of Environmental Temperature on Wind Energy Generation," Energies, MDPI, vol. 13(18), pages 1-21, September.
    18. Zhai, Pei, 2013. "Analyzing solar energy policies using a three-tier model: A case study of photovoltaics adoption in Arizona, United States," Renewable Energy, Elsevier, vol. 57(C), pages 317-322.
    19. Hanieh Seyedhashemi & Benoît Hingray & Christophe Lavaysse & Théo Chamarande, 2021. "The Impact of Low-Resource Periods on the Reliability of Wind Power Systems for Rural Electrification in Africa," Energies, MDPI, vol. 14(11), pages 1-18, May.
    20. Rusu, Eugen, 2024. "The expected wind power dynamics in the Mediterranean Sea considering different climate change scenarios," Renewable Energy, Elsevier, vol. 227(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:56:y:2016:i:c:p:272-282. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.