IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v53y2016icp1137-1148.html
   My bibliography  Save this article

Proposition of a PV/tidal powered micro-hydro and diesel hybrid system: A southern Bangladesh focus

Author

Listed:
  • Das, Himadry Shekhar
  • Yatim, A.H.M.
  • Tan, Chee Wei
  • Lau, Kwan Yiew

Abstract

Bangladesh being a developing country is struggling for the self-sufficiency of electric power for a very long time. In this run renewable energy can play an important role for electricity generation. Bangladesh abuts by Bay of Bengal, as a result the southern areas face around 2∼5 mof tidal head/height rise and fall and as it is in the tropical region it gets an average daylight of 7∼8 hper day. Thus the hydro (tidal) energy and solar energy can be the key points to meet the scarcity of power. This paper discusses a model of possible small hybrid power generation system consisting of a PV generation unit with storage and a micro-hydro generation unit and a diesel generator which can mitigate the rising energy demand at the southern areas of Bangladesh. In this paper the economic viability is discussed along with the technical aspects to set up such system via HOMER analysis. Moreover the system cost was analyzed together with a comparison of other system costs of similar capacity.

Suggested Citation

  • Das, Himadry Shekhar & Yatim, A.H.M. & Tan, Chee Wei & Lau, Kwan Yiew, 2016. "Proposition of a PV/tidal powered micro-hydro and diesel hybrid system: A southern Bangladesh focus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1137-1148.
  • Handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1137-1148
    DOI: 10.1016/j.rser.2015.09.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032115010084
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.09.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Rofiqul Islam, M. & Rabiul Islam, M. & Rafiqul Alam Beg, M., 2008. "Renewable energy resources and technologies practice in Bangladesh," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(2), pages 299-343, February.
    2. Rehman, Shafiqur & Al-Hadhrami, Luai M., 2010. "Study of a solar PV–diesel–battery hybrid power system for a remotely located population near Rafha, Saudi Arabia," Energy, Elsevier, vol. 35(12), pages 4986-4995.
    3. Nouni, M.R. & Mullick, S.C. & Kandpal, T.C., 2006. "Techno-economics of micro-hydro projects for decentralized power supply in India," Energy Policy, Elsevier, vol. 34(10), pages 1161-1174, July.
    4. Nandi, Sanjoy Kumar & Ghosh, Himangshu Ranjan, 2009. "A wind-PV-battery hybrid power system at Sitakunda in Bangladesh," Energy Policy, Elsevier, vol. 37(9), pages 3659-3664, September.
    5. Lau, K.Y. & Yousof, M.F.M. & Arshad, S.N.M. & Anwari, M. & Yatim, A.H.M., 2010. "Performance analysis of hybrid photovoltaic/diesel energy system under Malaysian conditions," Energy, Elsevier, vol. 35(8), pages 3245-3255.
    6. Abdilahi, Abdirahman Mohamed & Mohd Yatim, Abdul Halim & Mustafa, Mohd Wazir & Khalaf, Omar Tahseen & Shumran, Alshammari Fahad & Mohamed Nor, Faizah, 2014. "Feasibility study of renewable energy-based microgrid system in Somaliland׳s urban centers," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1048-1059.
    7. Rehman, Shafiqur & Mahbub Alam, Md. & Meyer, J.P. & Al-Hadhrami, Luai M., 2012. "Feasibility study of a wind–pv–diesel hybrid power system for a village," Renewable Energy, Elsevier, vol. 38(1), pages 258-268.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    2. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    3. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    4. Hassan, Rakibul & Das, Barun K. & Hasan, Mahmudul, 2022. "Integrated off-grid hybrid renewable energy system optimization based on economic, environmental, and social indicators for sustainable development," Energy, Elsevier, vol. 250(C).
    5. Aziz, Ali Saleh & Tajuddin, Mohammad Faridun Naim & Adzman, Mohd Rafi & Azmi, Azralmukmin & Ramli, Makbul A.M., 2019. "Optimization and sensitivity analysis of standalone hybrid energy systems for rural electrification: A case study of Iraq," Renewable Energy, Elsevier, vol. 138(C), pages 775-792.
    6. Popescu, Daniela & Dragomirescu, Andrei, 2024. "Cost-benefit analysis of a hydro-solar microsystem with Archimedean screw hydro turbine sized for a prosumer building," Renewable Energy, Elsevier, vol. 226(C).
    7. Yilmaz, Saban & Dincer, Furkan, 2017. "Optimal design of hybrid PV-Diesel-Battery systems for isolated lands: A case study for Kilis, Turkey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 344-352.
    8. Dahyun Kang & Tae Yong Jung, 2020. "Renewable Energy Options for a Rural Village in North Korea," Sustainability, MDPI, vol. 12(6), pages 1-19, March.
    9. Ifaei, Pouya & Farid, Alireza & Yoo, ChangKyoo, 2018. "An optimal renewable energy management strategy with and without hydropower using a factor weighted multi-criteria decision making analysis and nation-wide big data - Case study in Iran," Energy, Elsevier, vol. 158(C), pages 357-372.
    10. Isa, Normazlina Mat & Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2016. "A techno-economic assessment of a combined heat and power photovoltaic/fuel cell/battery energy system in Malaysia hospital," Energy, Elsevier, vol. 112(C), pages 75-90.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Bahramara, S. & Moghaddam, M. Parsa & Haghifam, M.R., 2016. "Optimal planning of hybrid renewable energy systems using HOMER: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 609-620.
    2. Akikur, R.K. & Saidur, R. & Ping, H.W. & Ullah, K.R., 2013. "Comparative study of stand-alone and hybrid solar energy systems suitable for off-grid rural electrification: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 738-752.
    3. Das, Barun K. & Hoque, Najmul & Mandal, Soumya & Pal, Tapas Kumar & Raihan, Md Abu, 2017. "A techno-economic feasibility of a stand-alone hybrid power generation for remote area application in Bangladesh," Energy, Elsevier, vol. 134(C), pages 775-788.
    4. Rezzouk, H. & Mellit, A., 2015. "Feasibility study and sensitivity analysis of a stand-alone photovoltaic–diesel–battery hybrid energy system in the north of Algeria," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1134-1150.
    5. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M. & Lau, Kwan Yiew, 2017. "Feasibility analysis of hybrid photovoltaic/battery/fuel cell energy system for an indigenous residence in East Malaysia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1332-1347.
    6. William López-Castrillón & Héctor H. Sepúlveda & Cristian Mattar, 2021. "Off-Grid Hybrid Electrical Generation Systems in Remote Communities: Trends and Characteristics in Sustainability Solutions," Sustainability, MDPI, vol. 13(11), pages 1-29, May.
    7. Fazelpour, Farivar & Soltani, Nima & Rosen, Marc A., 2014. "Feasibility of satisfying electrical energy needs with hybrid systems for a medium-size hotel on Kish Island, Iran," Energy, Elsevier, vol. 73(C), pages 856-865.
    8. Altun, Ayse Fidan & Kilic, Muhsin, 2020. "Design and performance evaluation based on economics and environmental impact of a PV-wind-diesel and battery standalone power system for various climates in Turkey," Renewable Energy, Elsevier, vol. 157(C), pages 424-443.
    9. Chauhan, Anurag & Saini, R.P., 2014. "A review on Integrated Renewable Energy System based power generation for stand-alone applications: Configurations, storage options, sizing methodologies and control," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 99-120.
    10. Ramli, Makbul A.M. & Hiendro, Ayong & Twaha, Ssennoga, 2015. "Economic analysis of PV/diesel hybrid system with flywheel energy storage," Renewable Energy, Elsevier, vol. 78(C), pages 398-405.
    11. Saheb Koussa, Djohra & Koussa, M. & Rennane, A. & Hadji, S. & Boufertella, A. & Balehouane, A. & Bellarbi, S., 2017. "Hybrid diesel-wind system with battery storage operating in standalone mode: Control and energy management – Experimental investigation," Energy, Elsevier, vol. 130(C), pages 38-47.
    12. Mandelli, Stefano & Barbieri, Jacopo & Mereu, Riccardo & Colombo, Emanuela, 2016. "Off-grid systems for rural electrification in developing countries: Definitions, classification and a comprehensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 58(C), pages 1621-1646.
    13. Erdinc, O. & Uzunoglu, M., 2012. "Optimum design of hybrid renewable energy systems: Overview of different approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1412-1425.
    14. Díaz, P. & Peña, R. & Muñoz, J. & Arias, C.A. & Sandoval, D., 2011. "Field analysis of solar PV-based collective systems for rural electrification," Energy, Elsevier, vol. 36(5), pages 2509-2516.
    15. Padrón, Isidro & Avila, Deivis & Marichal, Graciliano N. & Rodríguez, José A., 2019. "Assessment of Hybrid Renewable Energy Systems to supplied energy to Autonomous Desalination Systems in two islands of the Canary Archipelago," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 221-230.
    16. Hiendro, Ayong & Kurnianto, Rudi & Rajagukguk, Managam & Simanjuntak, Yohannes M. & Junaidi,, 2013. "Techno-economic analysis of photovoltaic/wind hybrid system for onshore/remote area in Indonesia," Energy, Elsevier, vol. 59(C), pages 652-657.
    17. Mohammed, Ammar & Pasupuleti, Jagadeesh & Khatib, Tamer & Elmenreich, Wilfried, 2015. "A review of process and operational system control of hybrid photovoltaic/diesel generator systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 436-446.
    18. Akinyele, D.O. & Rayudu, R.K., 2016. "Community-based hybrid electricity supply system: A practical and comparative approach," Applied Energy, Elsevier, vol. 171(C), pages 608-628.
    19. Caballero, F. & Sauma, E. & Yanine, F., 2013. "Business optimal design of a grid-connected hybrid PV (photovoltaic)-wind energy system without energy storage for an Easter Island's block," Energy, Elsevier, vol. 61(C), pages 248-261.
    20. González, Arnau & Riba, Jordi-Roger & Rius, Antoni, 2016. "Combined heat and power design based on environmental and cost criteria," Energy, Elsevier, vol. 116(P1), pages 922-932.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:53:y:2016:i:c:p:1137-1148. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.