IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v49y2015icp975-989.html
   My bibliography  Save this article

A systematic literature review on electricity management systems

Author

Listed:
  • Rasool, Ghulam
  • Ehsan, Farrukh
  • Shahbaz, Muhammad

Abstract

Many countries in the world and most importantly Pakistan is suffering from severe electricity crisis. Information Technology (IT) is being used in every field of the life and we may apply IT to overcome electricity crisis. A large number of papers are presented by different researchers on electricity management. The key motivation of this systematic literature review is to study, analyze and explore the status of different solutions presented for management of electricity throughout the world and determine requirements for the development of a new electricity management system. We apply standard systematic review method with the manual search of three digital libraries. Out of 74 primary studies, 27 studies are software contributions, 13 studies are hardware solutions, 18 studies represent the theoretical work and 16 studies contribute proposed ideas. The quality of the contributions is fair as 74 articles out of 209 were selected as candidate studies after manual peer review. Currently, the solutions presented by different researchers are limited in scope. Many researchers are working on tool contributions, but most of them are only providing solutions for specific regions and communities. There is a need to develop a generic Electricity Management System (EMS) that should be customizable and can be used as generic solution.

Suggested Citation

  • Rasool, Ghulam & Ehsan, Farrukh & Shahbaz, Muhammad, 2015. "A systematic literature review on electricity management systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 975-989.
  • Handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:975-989
    DOI: 10.1016/j.rser.2015.04.054
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211500324X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2015.04.054?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Hargreaves, Tom & Nye, Michael & Burgess, Jacquelin, 2010. "Making energy visible: A qualitative field study of how householders interact with feedback from smart energy monitors," Energy Policy, Elsevier, vol. 38(10), pages 6111-6119, October.
    2. Eberhard Jochem, 2005. "An Agenda for Energy and Material Efficiency Policy – An Element of Technology Policy for a More Sustainable Use of Natural Resources," CEPE Working paper series 05-40, CEPE Center for Energy Policy and Economics, ETH Zurich.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vitalii Nitsenko & Abbas Mardani & Justas Streimikis & Iryna Shkrabak & Ivan Klopov & Oleh Novomlynets & Olha Podolska, 2018. "Criteria for Evaluation of Efficiency of Energy Transformation Based on Renewable Energy Sources," Montenegrin Journal of Economics, Economic Laboratory for Transition Research (ELIT), vol. 14(4), pages 237-247.
    2. Abubakar, I. & Khalid, S.N. & Mustafa, M.W. & Shareef, Hussain & Mustapha, M., 2017. "Application of load monitoring in appliances’ energy management – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 235-245.
    3. Francesco Liberati & Alessandro Di Giorgio, 2017. "Economic Model Predictive and Feedback Control of a Smart Grid Prosumer Node," Energies, MDPI, vol. 11(1), pages 1-23, December.
    4. Viegas, Joaquim L. & Esteves, Paulo R. & Melício, R. & Mendes, V.M.F. & Vieira, Susana M., 2017. "Solutions for detection of non-technical losses in the electricity grid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 1256-1268.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lillemo, Shuling Chen, 2014. "Measuring the effect of procrastination and environmental awareness on households' energy-saving behaviours: An empirical approach," Energy Policy, Elsevier, vol. 66(C), pages 249-256.
    2. Burchell, Kevin & Rettie, Ruth & Roberts, Tom C., 2016. "Householder engagement with energy consumption feedback: the role of community action and communications," Energy Policy, Elsevier, vol. 88(C), pages 178-186.
    3. Morgane Innocent & Agnès François-Lecompte & Nolwenn Roudaut, 2020. "Comparison of human versus technological support to reduce domestic electricity consumption in France," Post-Print hal-02450849, HAL.
    4. Brown, Christopher J. & Markusson, Nils, 2019. "The responses of older adults to smart energy monitors," Energy Policy, Elsevier, vol. 130(C), pages 218-226.
    5. Liu, Xingjian & Wang, Mingshu & Qiang, Wei & Wu, Kang & Wang, Xiaomi, 2020. "Urban form, shrinking cities, and residential carbon emissions: Evidence from Chinese city-regions," Applied Energy, Elsevier, vol. 261(C).
    6. Foxon, Timothy J., 2013. "Transition pathways for a UK low carbon electricity future," Energy Policy, Elsevier, vol. 52(C), pages 10-24.
    7. Hege Westskog & Tanja Winther & Hanne Sæle, 2015. "The Effects of In-Home Displays—Revisiting the Context," Sustainability, MDPI, vol. 7(5), pages 1-21, May.
    8. Nilsson, Andreas & Bergstad, Cecilia Jakobsson & Thuvander, Liane & Andersson, David & Andersson, Kristin & Meiling, Pär, 2014. "Effects of continuous feedback on households’ electricity consumption: Potentials and barriers," Applied Energy, Elsevier, vol. 122(C), pages 17-23.
    9. Reinhard Madlener & Carlos Henggeler Antunes & Luis C. Dias, 2006. "Multi-Criteria versus Data Envelopment Analysis for Assessing the Performance of Biogas Plants," CEPE Working paper series 06-49, CEPE Center for Energy Policy and Economics, ETH Zurich.
    10. Molinari, Marco & Anund Vogel, Jonas & Rolando, Davide & Lundqvist, Per, 2023. "Using living labs to tackle innovation bottlenecks: the KTH Live-In Lab case study," Applied Energy, Elsevier, vol. 338(C).
    11. Vesterberg, Mattias, 2017. "Power to the people: Electricity demand and household behavior," Umeå Economic Studies 942, Umeå University, Department of Economics.
    12. Reinhard Madlener & Stefan Vögtli, 2006. "Diffusion of bioenergy in urban areas: socio-economic analysis of the planned Swiss wood-fired cogeneration plant in Basel," CEPE Working paper series 06-53, CEPE Center for Energy Policy and Economics, ETH Zurich.
    13. Blarke, Morten B. & Jenkins, Bryan M., 2013. "SuperGrid or SmartGrid: Competing strategies for large-scale integration of intermittent renewables?," Energy Policy, Elsevier, vol. 58(C), pages 381-390.
    14. Penelope Buckley, 2020. "Prices, information and nudges for residential electricity conservation : A meta-analysis," Post-Print hal-02500507, HAL.
    15. Adélaïde Fadhuile & Daniel Llerena & Béatrice Roussillon, 2023. "Intrinsic Motivation to Promote the Development of Renewable Energy : A Field Experiment from Household Demand," Working Papers hal-03977597, HAL.
    16. Silvia Banfi & Massimo Filippini & Andrea Horehájová, 2007. "Hedonic Price Functions for Zurich and Lugano with Special Focus on Electrosmog," CEPE Working paper series 07-57, CEPE Center for Energy Policy and Economics, ETH Zurich.
    17. Jennifer Gabrys, 2014. "A Cosmopolitics of Energy: Diverging Materialities and Hesitating Practices," Environment and Planning A, , vol. 46(9), pages 2095-2109, September.
    18. Büchs, Milena & Bahaj, AbuBakr S. & Blunden, Luke & Bourikas, Leonidas & Falkingham, Jane & James, Patrick & Kamanda, Mamusu & Wu, Yue, 2018. "Promoting low carbon behaviours through personalised information? Long-term evaluation of a carbon calculator interview," Energy Policy, Elsevier, vol. 120(C), pages 284-293.
    19. Yildiz, B. & Bilbao, J.I. & Dore, J. & Sproul, A.B., 2017. "Recent advances in the analysis of residential electricity consumption and applications of smart meter data," Applied Energy, Elsevier, vol. 208(C), pages 402-427.
    20. Christian Cordes & Joshua Henkel, 2022. "Enhanced "Green Nudging": Tapping the Channels of Cultural Transmission," Bremen Papers on Economics & Innovation 2208, University of Bremen, Faculty of Business Studies and Economics.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:49:y:2015:i:c:p:975-989. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.