IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v44y2015icp473-495.html
   My bibliography  Save this article

GHG footprint of major cities in India

Author

Listed:
  • Ramachandra, T.V.
  • Aithal, Bharath H.
  • Sreejith, K.

Abstract

Concentration of greenhouse gases (GHG) in the atmosphere has been increasing rapidly during the last century due to ever increasing anthropogenic activities resulting in significant increases in the temperature of the Earth causing global warming. Major sources of GHG are forests (due to human induced land cover changes leading to deforestation), power generation (burning of fossil fuels), transportation (burning fossil fuel), agriculture (livestock, farming, rice cultivation and burning of crop residues), water bodies (wetlands), industry and urban activities (building, construction, transport, solid and liquid waste). Aggregation of GHG (CO2 and non-CO2 gases), in terms of Carbon dioxide equivalent (CO2e), indicate the GHG footprint. GHG footprint is thus a measure of the impact of human activities on the environment in terms of the amount of greenhouse gases produced. This study focuses on accounting of the amount of three important greenhouses gases namely carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) and thereby developing GHG footprint of the major cities in India. National GHG inventories have been used for quantification of sector-wise greenhouse gas emissions. Country specific emission factors are used where all the emission factors are available. Default emission factors from IPCC guidelines are used when there are no country specific emission factors. Emission of each greenhouse gas is estimated by multiplying fuel consumption by the corresponding emission factor. The current study estimates GHG footprint or GHG emissions (in terms of CO2 equivalent) for Indian major cities and explores the linkages with the population and GDP.

Suggested Citation

  • Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
  • Handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:473-495
    DOI: 10.1016/j.rser.2014.12.036
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032114010880
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2014.12.036?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Reddy, B. Sudhakara & Srinivas, T., 2009. "Energy use in Indian household sector – An actor-oriented approach," Energy, Elsevier, vol. 34(8), pages 992-1002.
    2. Sovacool, Benjamin K. & Brown, Marilyn A., 2010. "Twelve metropolitan carbon footprints: A preliminary comparative global assessment," Energy Policy, Elsevier, vol. 38(9), pages 4856-4869, September.
    3. T.V. Ramachandra & Shruthi Bachamanda, 2007. "Environmental audit of Municipal Solid Waste Management," International Journal of Environmental Technology and Management, Inderscience Enterprises Ltd, vol. 7(3/4), pages 369-391.
    4. Ramachandra, T.V. & Shwetmala,, 2012. "Decentralised carbon footprint analysis for opting climate change mitigation strategies in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5820-5833.
    5. Nelson, Gerald C. & Robertson, Richard & Msangi, Siwa & Zhu, Tingju & Liao, Xiaoli & Jawajar, Puja, 2009. "Greenhouse gas mitigation: Issues for Indian agriculture," IFPRI discussion papers 900, International Food Policy Research Institute (IFPRI).
    6. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    7. Moomaw, William R, 1996. "Industrial emissions of greenhouse gases," Energy Policy, Elsevier, vol. 24(10-11), pages 951-968.
    8. Larsen, Hogne N. & Hertwich, Edgar G., 2010. "Identifying important characteristics of municipal carbon footprints," Ecological Economics, Elsevier, vol. 70(1), pages 60-66, November.
    9. Stern, David I. & Common, Michael S. & Barbier, Edward B., 1996. "Economic growth and environmental degradation: The environmental Kuznets curve and sustainable development," World Development, Elsevier, vol. 24(7), pages 1151-1160, July.
    10. Baidya, S. & Borken-Kleefeld, J., 2009. "Atmospheric emissions from road transportation in India," Energy Policy, Elsevier, vol. 37(10), pages 3812-3822, October.
    11. Shafik, Nemat & Bandyopadhyay, Sushenjit, 1992. "Economic growth and environmental quality : time series and cross-country evidence," Policy Research Working Paper Series 904, The World Bank.
    12. Fan, Ying & Liu, Lan-Cui & Wu, Gang & Tsai, Hsien-Tang & Wei, Yi-Ming, 2007. "Changes in carbon intensity in China: Empirical findings from 1980-2003," Ecological Economics, Elsevier, vol. 62(3-4), pages 683-691, May.
    13. Narasimha Rao, M. & Reddy, B. Sudhakara, 2007. "Variations in energy use by Indian households: An analysis of micro level data," Energy, Elsevier, vol. 32(2), pages 143-153.
    14. Kennedy, Christopher & Steinberger, Julia & Gasson, Barrie & Hansen, Yvonne & Hillman, Timothy & Havránek, Miroslav & Pataki, Diane & Phdungsilp, Aumnad & Ramaswami, Anu & Mendez, Gara Villalba, 2010. "Methodology for inventorying greenhouse gas emissions from global cities," Energy Policy, Elsevier, vol. 38(9), pages 4828-4837, September.
    15. Pachauri, Shonali & Spreng, Daniel, 2002. "Direct and indirect energy requirements of households in India," Energy Policy, Elsevier, vol. 30(6), pages 511-523, May.
    16. Kurt Kleiner, 2007. "The corporate race to cut carbon," Nature Climate Change, Nature, vol. 1(708), pages 40-43, August.
    17. Murthy, N.S. & Panda, M. & Parikh, J., 1997. "Economic growth, energy demand and carbon dioxide emissions in India: 1990-2020," Environment and Development Economics, Cambridge University Press, vol. 2(2), pages 173-193, May.
    18. E. J. Dlugokencky & K. A. Masarie & P. M. Lang & P. P. Tans, 1998. "Continuing decline in the growth rate of the atmospheric methane burden," Nature, Nature, vol. 393(6684), pages 447-450, June.
    19. James H. Butler & Mark Battle & Michael L. Bender & Stephen A. Montzka & Andrew D. Clarke & Eric S. Saltzman & Cara M. Sucher & Jeffrey P. Severinghaus & James W. Elkins, 1999. "A record of atmospheric halocarbons during the twentieth century from polar firn air," Nature, Nature, vol. 399(6738), pages 749-755, June.
    20. Murthy, N. S. & Panda, Manoj & Parikh, Jyoti, 1997. "Economic development, poverty reduction and carbon emissions in India," Energy Economics, Elsevier, vol. 19(3), pages 327-354, July.
    21. Mohammed Redha Qader, 2009. "Electricity Consumption and GHG Emissions in GCC Countries," Energies, MDPI, vol. 2(4), pages 1-13, December.
    22. Weisser, Daniel, 2007. "A guide to life-cycle greenhouse gas (GHG) emissions from electric supply technologies," Energy, Elsevier, vol. 32(9), pages 1543-1559.
    23. Ramanathan, R. & Parikh, Jyoti K., 1999. "Transport sector in India: an analysis in the context of sustainable development," Transport Policy, Elsevier, vol. 6(1), pages 35-46, January.
    24. N. Chakraborty & G. M. Sarkar & S. C. Lahiri, 2000. "Methane emission from rice paddy soils, aerotolerance of methanogens and global thermal warming," Environment Systems and Decisions, Springer, vol. 20(4), pages 343-350, December.
    25. Dhakal, Shobhakar, 2009. "Urban energy use and carbon emissions from cities in China and policy implications," Energy Policy, Elsevier, vol. 37(11), pages 4208-4219, November.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ramachandra, T.V. & Saranya, G., 2022. "Sustainable Bioeconomy prospects of diatom biorefineries in the Indian west coast," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    2. Vajjarapu, Harsha & Verma, Ashish, 2022. "Understanding the mitigation potential of sustainable urban transport measures across income and gender groups," Journal of Transport Geography, Elsevier, vol. 102(C).
    3. Zawieska, Jakub & Pieriegud, Jana, 2018. "Smart city as a tool for sustainable mobility and transport decarbonisation," Transport Policy, Elsevier, vol. 63(C), pages 39-50.
    4. Kozera, Agnieszka & Satoła, Łukasz & Standar, Aldona & Dworakowska-Raj, Małgorzata, 2022. "Regional diversity of low-carbon investment support from EU funds in the 2014–2020 financial perspective based on the example of Polish municipalities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    5. Paul Thomas & Nirmala Soren, 2020. "An overview of municipal solid waste-to-energy application in Indian scenario," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 22(2), pages 575-592, February.
    6. Bera, Reema & Maitra, Bhargab, 2021. "Assessing consumer preferences for Plug-in Hybrid Electric Vehicle (PHEV): An Indian perspective," Research in Transportation Economics, Elsevier, vol. 90(C).
    7. Lebunu Hewage Udara Willhelm Abeydeera & Gayani Karunasena, 2019. "Greenhouse Gas Emission Reporting Mechanism for Hotel Industry-A Case of Sri Lanka," International Journal of Environmental Sciences & Natural Resources, Juniper Publishers Inc., vol. 20(4), pages 111-118, July.
    8. Khan, Muhammad Imran & Yasmeen, Tabassam & Khan, Muhammad Ijaz & Farooq, Muhammad & Wakeel, Muhammad, 2016. "Research progress in the development of natural gas as fuel for road vehicles: A bibliographic review (1991–2016)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 702-741.
    9. Yuanqing Wang & Liu Yang & Sunsheng Han & Chao Li & T. V. Ramachandra, 2017. "Urban CO2 emissions in Xi’an and Bangalore by commuters: implications for controlling urban transportation carbon dioxide emissions in developing countries," Mitigation and Adaptation Strategies for Global Change, Springer, vol. 22(7), pages 993-1019, October.
    10. Forster Kwame Boateng, 2020. "Effects of Economic Growth, Trade Openness, and Urbanization on Carbon Dioxide Emissions in Ghana, 1960 to 2014," Applied Economics and Finance, Redfame publishing, vol. 7(2), pages 9-17, March.
    11. T. V. Ramachandra & Bharath Setturu, 2019. "Sustainable Management of Bannerghatta National Park, India, with the Insights in Land Cover Dynamics," FIIB Business Review, , vol. 8(2), pages 118-131, June.
    12. Pata, Ugur Korkut, 2021. "Linking renewable energy, globalization, agriculture, CO2 emissions and ecological footprint in BRIC countries: A sustainability perspective," Renewable Energy, Elsevier, vol. 173(C), pages 197-208.
    13. Alicja Kolasa-Więcek & Agnieszka A. Pilarska & Małgorzata Wzorek & Dariusz Suszanowicz & Piotr Boniecki, 2023. "Modeling the Consumption of Main Fossil Fuels in Greenhouse Gas Emissions in European Countries, Considering Gross Domestic Product and Population," Energies, MDPI, vol. 16(23), pages 1-18, December.
    14. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    15. Ramachandra, T.V. & Hebbale, Deepthi, 2020. "Bioethanol from macroalgae: Prospects and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ramachandra, T.V. & Bajpai, Vishnu & Kulkarni, Gouri & Aithal, Bharath H. & Han, Sun Sheng, 2017. "Economic disparity and CO2 emissions: The domestic energy sector in Greater Bangalore, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 1331-1344.
    2. Rui Huang & Shaohui Zhang & Changxin Liu, 2018. "Comparing Urban and Rural Household CO 2 Emissions—Case from China’s Four Megacities: Beijing, Tianjin, Shanghai, and Chongqing," Energies, MDPI, vol. 11(5), pages 1-17, May.
    3. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    4. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    5. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
    6. Facchini, Angelo & Kennedy, Chris & Stewart, Iain & Mele, Renata, 2017. "The energy metabolism of megacities," Applied Energy, Elsevier, vol. 186(P2), pages 86-95.
    7. Bi, Jun & Zhang, Rongrong & Wang, Haikun & Liu, Miaomiao & Wu, Yi, 2011. "The benchmarks of carbon emissions and policy implications for China's cities: Case of Nanjing," Energy Policy, Elsevier, vol. 39(9), pages 4785-4794, September.
    8. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    9. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2016. "Patterns and determinants of household use of fuels for cooking: Empirical evidence from sub-Saharan Africa," Energy, Elsevier, vol. 117(P1), pages 93-104.
    10. Rao, Narasimha D., 2013. "Distributional impacts of climate change mitigation in Indian electricity: The influence of governance," Energy Policy, Elsevier, vol. 61(C), pages 1344-1356.
    11. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter & Marenya, Paswel, 2017. "A ladder within a ladder: Understanding the factors influencing a household's domestic use of electricity in four African countries," Energy Economics, Elsevier, vol. 66(C), pages 167-181.
    12. Golley, Jane & Meng, Xin, 2012. "Income inequality and carbon dioxide emissions: The case of Chinese urban households," Energy Economics, Elsevier, vol. 34(6), pages 1864-1872.
    13. Feng, Zhen-Hua & Zou, Le-Le & Wei, Yi-Ming, 2011. "The impact of household consumption on energy use and CO2 emissions in China," Energy, Elsevier, vol. 36(1), pages 656-670.
    14. Liu, Hongtao & Xi, Youmin & Guo, Ju'e & Li, Xia, 2010. "Energy embodied in the international trade of China: An energy input-output analysis," Energy Policy, Elsevier, vol. 38(8), pages 3957-3964, August.
    15. Wenwen Wang & Ming Zhang, 2015. "Direct and indirect energy consumption of rural households in China," Natural Hazards: Journal of the International Society for the Prevention and Mitigation of Natural Hazards, Springer;International Society for the Prevention and Mitigation of Natural Hazards, vol. 79(3), pages 1693-1705, December.
    16. Liu, Zhu & Liang, Sai & Geng, Yong & Xue, Bing & Xi, Fengming & Pan, Ying & Zhang, Tianzhu & Fujita, Tsuyoshi, 2012. "Features, trajectories and driving forces for energy-related GHG emissions from Chinese mega cites: The case of Beijing, Tianjin, Shanghai and Chongqing," Energy, Elsevier, vol. 37(1), pages 245-254.
    17. Yawale, Satish Kumar & Hanaoka, Tatsuya & Kapshe, Manmohan, 2021. "Development of energy balance table for rural and urban households and evaluation of energy consumption in Indian states," Renewable and Sustainable Energy Reviews, Elsevier, vol. 136(C).
    18. Mottaleb, Khondoker Abdul & Rahut, Dil Bahadur & Ali, Akhter, 2017. "An exploration into the household energy choice and expenditure in Bangladesh," Energy, Elsevier, vol. 135(C), pages 767-776.
    19. Rahut, Dil Bahadur & Behera, Bhagirath & Ali, Akhter, 2017. "Factors determining household use of clean and renewable energy sources for lighting in Sub-Saharan Africa," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 661-672.
    20. Baul, T.K. & Datta, D. & Alam, A., 2018. "A comparative study on household level energy consumption and related emissions from renewable (biomass) and non-renewable energy sources in Bangladesh," Energy Policy, Elsevier, vol. 114(C), pages 598-608.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:44:y:2015:i:c:p:473-495. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.