IDEAS home Printed from https://ideas.repec.org/a/cup/endeec/v2y1997i02p173-193_00.html
   My bibliography  Save this article

Economic growth, energy demand and carbon dioxide emissions in India: 1990-2020

Author

Listed:
  • MURTHY, N.S.
  • PANDA, M.
  • PARIKH, J.

Abstract

This article investigates the linkages between economic growth, energy consumption and carbon dioxide (CO2) emissions in India by analysing the structure of production and consumption in the Indian economy. We begin with an examination of the consumption pattern of six different income classes, three each in urban and rural India, and then estimate the direct and indirect energy and CO2 emission coefficients for supporting production in various sectors. This provides us with a basis for estimating the energy and emission content of the consumption baskets of the different income classes in India. CO2 emissions are projected to increase from 0.18 tonnes of carbon (tC) per capita in 1990 to about 0.62 tC per capita in 2020 under the reference scenario which corresponds to a GDP growth rate of 5.5% per annum. We then analyse scenarios of technology improvement in which emissions are reduced to 0.47 tC per capita in 2020. Our projection methodology takes into account the changes in aggregate consumpti on pattern due to mobility of the population across the income classes and from rural to urban areas, besides the increase in per capita consumption of all classes.

Suggested Citation

  • Murthy, N.S. & Panda, M. & Parikh, J., 1997. "Economic growth, energy demand and carbon dioxide emissions in India: 1990-2020," Environment and Development Economics, Cambridge University Press, vol. 2(2), pages 173-193, May.
  • Handle: RePEc:cup:endeec:v:2:y:1997:i:02:p:173-193_00
    as

    Download full text from publisher

    File URL: https://www.cambridge.org/core/product/identifier/S1355770X97000156/type/journal_article
    File Function: link to article abstract page
    Download Restriction: no
    ---><---

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Lenzen, Manfred & Wier, Mette & Cohen, Claude & Hayami, Hitoshi & Pachauri, Shonali & Schaeffer, Roberto, 2006. "A comparative multivariate analysis of household energy requirements in Australia, Brazil, Denmark, India and Japan," Energy, Elsevier, vol. 31(2), pages 181-207.
    2. Sun, Chuanwang & Ding, Dan & Yang, Mian, 2017. "Estimating the complete CO2 emissions and the carbon intensity in India: From the carbon transfer perspective," Energy Policy, Elsevier, vol. 109(C), pages 418-427.
    3. Alam, Shaista & Fatima, Ambreen & Butt, Muhammad S., 2007. "Sustainable development in Pakistan in the context of energy consumption demand and environmental degradation," Journal of Asian Economics, Elsevier, vol. 18(5), pages 825-837, October.
    4. Pradhan, Shreekar & Ale, Bhakta Bahadur & Amatya, Vishwa Bhusan, 2006. "Mitigation potential of greenhouse gas emission and implications on fuel consumption due to clean energy vehicles as public passenger transport in Kathmandu Valley of Nepal: A case study of trolley bu," Energy, Elsevier, vol. 31(12), pages 1748-1760.
    5. Peng, Huaxi & Kan, Siyi & Meng, Jing & Li, Shuping & Cui, Can & Tan, Chang & Wang, Zhenyu & Wen, Quan & Guan, Dabo, 2024. "Emission accounting and drivers in South American countries," Applied Energy, Elsevier, vol. 358(C).
    6. Santosh K. Sahu & Deepanjali Mehta, 2018. "Determinants Of Energy And Co2 Emission Intensities: A Study Of Manufacturing Firms In India," The Singapore Economic Review (SER), World Scientific Publishing Co. Pte. Ltd., vol. 63(02), pages 389-407, March.
    7. Pottier, Antonin, 2022. "Expenditure elasticity and income elasticity of GHG emissions: A survey of literature on household carbon footprint," Ecological Economics, Elsevier, vol. 192(C).
    8. Auffhammer, Maximilian & Carson, Richard T. & Garin-Munoz, Teresa, 2004. "Forecasting China's Carbon Dioxide Emissions: A Provincial Approach," CUDARE Working Papers 25109, University of California, Berkeley, Department of Agricultural and Resource Economics.
    9. Pachauri, Shonali, 2004. "An analysis of cross-sectional variations in total household energy requirements in India using micro survey data," Energy Policy, Elsevier, vol. 32(15), pages 1723-1735, October.
    10. Parikh, Jyoti & Panda, Manoj & Ganesh-Kumar, A. & Singh, Vinay, 2009. "CO2 emissions structure of Indian economy," Energy, Elsevier, vol. 34(8), pages 1024-1031.
    11. Ramachandra, T.V. & Aithal, Bharath H. & Sreejith, K., 2015. "GHG footprint of major cities in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 473-495.
    12. Kakali Mukhopadhyay, 2008. "Air pollution and income distribution in India," Asia-Pacific Development Journal, United Nations Economic and Social Commission for Asia and the Pacific (ESCAP), vol. 15(1), pages 35-64, June.
    13. Destek, Mehmet Akif & Hossain, Mohammad Razib & Khan, Zeeshan, 2023. "Premature Deindustrialization and Environmental Degradation," MPRA Paper 117737, University Library of Munich, Germany.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:cup:endeec:v:2:y:1997:i:02:p:173-193_00. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Kirk Stebbing (email available below). General contact details of provider: https://www.cambridge.org/ede .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.