IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v21y2013icp548-561.html
   My bibliography  Save this article

Heat transfer enhancement by magnetic nanofluids—A review

Author

Listed:
  • Nkurikiyimfura, Innocent
  • Wang, Yanmin
  • Pan, Zhidong

Abstract

Magnetic nanofluids (MNF) constitute a special class of nanofluids that exhibit both magnetic and fluid properties. The interests in the use of MNF as a heat transfer medium stem from a possibility of controlling its flow and heat transfer process via an external magnetic field. This review presents recent developments in this field with the aim of identifying major affecting parameters and some novel applications. This review emphasizes on thermal conductivity enhancement and thermomagnetic convection in devices using MNFs as heat transfer media.

Suggested Citation

  • Nkurikiyimfura, Innocent & Wang, Yanmin & Pan, Zhidong, 2013. "Heat transfer enhancement by magnetic nanofluids—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 548-561.
  • Handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:548-561
    DOI: 10.1016/j.rser.2012.12.039
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032112007447
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2012.12.039?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Paul, G. & Chopkar, M. & Manna, I. & Das, P.K., 2010. "Techniques for measuring the thermal conductivity of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1913-1924, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mahajan, Amit & Sharma, Mahesh Kumar, 2018. "The onset of convection in a magnetic nanofluid layer with variable gravity effects," Applied Mathematics and Computation, Elsevier, vol. 339(C), pages 622-635.
    2. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    3. Mukkamala, Yagnavalkya, 2017. "Contemporary trends in thermo-hydraulic testing and modeling of automotive radiators deploying nano-coolants and aerodynamically efficient air-side fins," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1208-1229.
    4. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    5. Shi, Lei & Zhang, Shuai & Arshad, Adeel & Hu, Yanwei & He, Yurong & Yan, Yuying, 2021. "Thermo-physical properties prediction of carbon-based magnetic nanofluids based on an artificial neural network," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    6. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    7. Xiao, Lan & Gan, Li-Na & Wu, Shuang-Ying & Chen, Zhi-Li, 2021. "Temperature uniformity and performance of PV/T system featured by a nanofluid-based spectrum-splitting top channel and an S-shaped bottom channel," Renewable Energy, Elsevier, vol. 167(C), pages 929-941.
    8. Rashidi, Saman & Hormozi, Faramarz & Sundén, Bengt & Mahian, Omid, 2019. "Energy saving in thermal energy systems using dimpled surface technology – A review on mechanisms and applications," Applied Energy, Elsevier, vol. 250(C), pages 1491-1547.
    9. Sardarabadi, Mohammad & Hosseinzadeh, Mohammad & Kazemian, Arash & Passandideh-Fard, Mohammad, 2017. "Experimental investigation of the effects of using metal-oxides/water nanofluids on a photovoltaic thermal system (PVT) from energy and exergy viewpoints," Energy, Elsevier, vol. 138(C), pages 682-695.
    10. Solangi, K.H. & Kazi, S.N. & Luhur, M.R. & Badarudin, A. & Amiri, A. & Sadri, Rad & Zubir, M.N.M. & Gharehkhani, Samira & Teng, K.H., 2015. "A comprehensive review of thermo-physical properties and convective heat transfer to nanofluids," Energy, Elsevier, vol. 89(C), pages 1065-1086.
    11. Ali, Bagh & Khan, Shahid Ali & Hussein, Ahmed Kadhim & Thumma, Thirupathi & Hussain, Sajjad, 2022. "Hybrid nanofluids: Significance of gravity modulation, heat source/ sink, and magnetohydrodynamic on dynamics of micropolar fluid over an inclined surface via finite element simulation," Applied Mathematics and Computation, Elsevier, vol. 419(C).
    12. Xie, Zhiyong & Jian, Yongjun, 2020. "Electrokinetic energy conversion of nanofluids in MHD-based microtube," Energy, Elsevier, vol. 212(C).
    13. Suman, Siddharth & Khan, Mohd. Kaleem & Pathak, Manabendra, 2015. "Performance enhancement of solar collectors—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 49(C), pages 192-210.
    14. Sundar, L. Syam & Sharma, K.V. & Singh, Manoj K. & Sousa, A.C.M., 2017. "Hybrid nanofluids preparation, thermal properties, heat transfer and friction factor – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 185-198.
    15. Yedhu Krishnan, R. & Manikandan, S. & Suganthi, K.S. & Leela Vinodhan, V. & Rajan, K.S., 2016. "Novel copper – Propylene glycol nanofluid as efficient thermic fluid for potential application in discharge cycle of thermal energy storage," Energy, Elsevier, vol. 107(C), pages 482-492.
    16. Afifah, A.N. & Syahrullail, S & Sidik, NAC, 2016. "Magnetoviscous effect and thermomagnetic convection of magnetic fluid: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 1030-1040.
    17. Gürdal, Mehmet & Arslan, Kamil & Gedik, Engin & Minea, Alina Adriana, 2022. "Effects of using nanofluid, applying a magnetic field, and placing turbulators in channels on the convective heat transfer: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 162(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Tawfik, Mohamed M., 2017. "Experimental studies of nanofluid thermal conductivity enhancement and applications: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 1239-1253.
    2. Rostami, Sara & Afrand, Masoud & Shahsavar, Amin & Sheikholeslami, M. & Kalbasi, Rasool & Aghakhani, Saeed & Shadloo, Mostafa Safdari & Oztop, Hakan F., 2020. "A review of melting and freezing processes of PCM/nano-PCM and their application in energy storage," Energy, Elsevier, vol. 211(C).
    3. Younus Hamoudi Assaf & Abdulrazzak Akroot & Hasanain A. Abdul Wahhab & Wadah Talal & Mothana Bdaiwi & Mohammed Y. Nawaf, 2023. "Impact of Nano Additives in Heat Exchangers with Twisted Tapes and Rings to Increase Efficiency: A Review," Sustainability, MDPI, vol. 15(10), pages 1-17, May.
    4. Hussein, Adnan M. & Sharma, K.V. & Bakar, R.A. & Kadirgama, K., 2014. "A review of forced convection heat transfer enhancement and hydrodynamic characteristics of a nanofluid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 734-743.
    5. Vinay Atgur & G. Manavendra & Nagaraj R. Banapurmath & Boggarapu Nageswar Rao & Ali A. Rajhi & T. M. Yunus Khan & Chandramouli Vadlamudi & Sanjay Krishnappa & Ashok M. Sajjan & R. Venkatesh, 2022. "Essence of Thermal Analysis to Assess Biodiesel Combustion Performance," Energies, MDPI, vol. 15(18), pages 1-23, September.
    6. Chandrasekar, M. & Suresh, S. & Senthilkumar, T., 2012. "Mechanisms proposed through experimental investigations on thermophysical properties and forced convective heat transfer characteristics of various nanofluids – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(6), pages 3917-3938.
    7. Ambreen, Tehmina & Kim, Man-Hoe, 2018. "Heat transfer and pressure drop correlations of nanofluids: A state of art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 564-583.
    8. Shoukat A. Khan & Muataz A. Atieh & Muammer Koç, 2018. "Micro-Nano Scale Surface Coating for Nucleate Boiling Heat Transfer: A Critical Review," Energies, MDPI, vol. 11(11), pages 1-30, November.
    9. Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
    10. Pinar Eneren & Yunus Tansu Aksoy & Maria Rosaria Vetrano, 2022. "Experiments on Single-Phase Nanofluid Heat Transfer Mechanisms in Microchannel Heat Sinks: A Review," Energies, MDPI, vol. 15(7), pages 1-21, March.
    11. Akilu, Suleiman & Sharma, K.V. & Baheta, Aklilu Tesfamichael & Mamat, Rizalman, 2016. "A review of thermophysical properties of water based composite nanofluids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 654-678.
    12. Rasheed, A.K. & Khalid, M. & Rashmi, W. & Gupta, T.C.S.M. & Chan, A., 2016. "Graphene based nanofluids and nanolubricants – Review of recent developments," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 346-362.
    13. Naqvi, Syed Muhammad Raza Shah & Muhammad, Taseer & Saleem, Salman & Kim, Hyun Min, 2020. "Significance of non-uniform heat generation/absorption in hydromagnetic flow of nanofluid due to stretching/shrinking disk," Physica A: Statistical Mechanics and its Applications, Elsevier, vol. 553(C).
    14. Lomascolo, Mauro & Colangelo, Gianpiero & Milanese, Marco & de Risi, Arturo, 2015. "Review of heat transfer in nanofluids: Conductive, convective and radiative experimental results," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1182-1198.
    15. Zhao, Ningbo & Li, Shuying & Yang, Jialong, 2016. "A review on nanofluids: Data-driven modeling of thermalphysical properties and the application in automotive radiator," Renewable and Sustainable Energy Reviews, Elsevier, vol. 66(C), pages 596-616.
    16. Palacios, Anabel & Cong, Lin & Navarro, M.E. & Ding, Yulong & Barreneche, Camila, 2019. "Thermal conductivity measurement techniques for characterizing thermal energy storage materials – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 32-52.
    17. Sundar, L. Syam & Sharma, K.V. & Naik, M.T. & Singh, Manoj K., 2013. "Empirical and theoretical correlations on viscosity of nanofluids: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 670-686.
    18. Sarkar, Jahar & Ghosh, Pradyumna & Adil, Arjumand, 2015. "A review on hybrid nanofluids: Recent research, development and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 164-177.
    19. Che Sidik, Nor Azwadi & Witri Mohd Yazid, Muhammad Noor Afiq & Mamat, Rizalman, 2017. "Recent advancement of nanofluids in engine cooling system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 75(C), pages 137-144.
    20. Janvier Sylvestre N’cho & Issouf Fofana & Yazid Hadjadj & Abderrahmane Beroual, 2016. "Review of Physicochemical-Based Diagnostic Techniques for Assessing Insulation Condition in Aged Transformers," Energies, MDPI, vol. 9(5), pages 1-29, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:21:y:2013:i:c:p:548-561. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.