IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v189y2024ipas1364032123007888.html
   My bibliography  Save this article

From green hydrogen to electricity: A review on recent advances, challenges, and opportunities on power-to-hydrogen-to-power systems

Author

Listed:
  • Risco-Bravo, A.
  • Varela, C.
  • Bartels, J.
  • Zondervan, E.

Abstract

The energy sector is responsible for around two-thirds of greenhouse gas emissions, mainly relying on fossil fuels. Thus, the industry must make substantial changes as part of the global energy transition toward a carbon-neutral society. Green hydrogen has the potential to boost the transition to clean and renewable energy while providing stability and reliability to power grids. This work reviews the most recent developments of Power-to-Hydrogen-to-Power (P2H2P) systems: conversion of power to hydrogen, its storage, transport, and re-electrification, with emphasis on their technical characteristics, novel modeling approaches, and implementation challenges. The main opportunities to exploit the potential of P2H2P are associated with cost efficiency and innovation, sector coupling, and reduction of grid dependence. In such a way, P2H2P systems would become cost-competitive while decarbonizing sectors. Furthermore, the gradual maturity of technology and political support would encourage the development of sustainable energies for zero-emission economies.

Suggested Citation

  • Risco-Bravo, A. & Varela, C. & Bartels, J. & Zondervan, E., 2024. "From green hydrogen to electricity: A review on recent advances, challenges, and opportunities on power-to-hydrogen-to-power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
  • Handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007888
    DOI: 10.1016/j.rser.2023.113930
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032123007888
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113930?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ana L. Santos & Maria-João Cebola & Diogo M. F. Santos, 2021. "Towards the Hydrogen Economy—A Review of the Parameters That Influence the Efficiency of Alkaline Water Electrolyzers," Energies, MDPI, vol. 14(11), pages 1-35, May.
    2. Blanco, Herib & Faaij, André, 2018. "A review at the role of storage in energy systems with a focus on Power to Gas and long-term storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 1049-1086.
    3. Jang, Dohyung & Cho, Hyun-Seok & Kang, Sanggyu, 2021. "Numerical modeling and analysis of the effect of pressure on the performance of an alkaline water electrolysis system," Applied Energy, Elsevier, vol. 287(C).
    4. Shi, Xunpeng & Liao, Xun & Li, Yanfei, 2020. "Quantification of fresh water consumption and scarcity footprints of hydrogen from water electrolysis: A methodology framework," Renewable Energy, Elsevier, vol. 154(C), pages 786-796.
    5. Wilko Heitkoetter & Wided Medjroubi & Thomas Vogt & Carsten Agert, 2019. "Comparison of Open Source Power Grid Models—Combining a Mathematical, Visual and Electrical Analysis in an Open Source Tool," Energies, MDPI, vol. 12(24), pages 1-15, December.
    6. Mohammad Alhuyi Nazari & Morteza Fahim Alavi & Mohamed Salem & Mamdouh El Haj Assad, 2022. "Utilization of hydrogen in gas turbines: a comprehensive review [Hydrogen injection as additional fuel in gas turbine combustor. Evaluation of effects]," International Journal of Low-Carbon Technologies, Oxford University Press, vol. 17, pages 513-519.
    7. Burton, N.A. & Padilla, R.V. & Rose, A. & Habibullah, H., 2021. "Increasing the efficiency of hydrogen production from solar powered water electrolysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    8. Shirizadeh, Behrang & Quirion, Philippe, 2022. "Do multi-sector energy system optimization models need hourly temporal resolution? A case study with an investment and dispatch model applied to France," Applied Energy, Elsevier, vol. 305(C).
    9. Gu, Chenghong & Tang, Can & Xiang, Yue & Xie, Da, 2019. "Power-to-gas management using robust optimisation in integrated energy systems," Applied Energy, Elsevier, vol. 236(C), pages 681-689.
    10. Reuß, M. & Grube, T. & Robinius, M. & Preuster, P. & Wasserscheid, P. & Stolten, D., 2017. "Seasonal storage and alternative carriers: A flexible hydrogen supply chain model," Applied Energy, Elsevier, vol. 200(C), pages 290-302.
    11. Wang, Ligang & Zhang, Yumeng & Pérez-Fortes, Mar & Aubin, Philippe & Lin, Tzu-En & Yang, Yongping & Maréchal, François & Van herle, Jan, 2020. "Reversible solid-oxide cell stack based power-to-x-to-power systems: Comparison of thermodynamic performance," Applied Energy, Elsevier, vol. 275(C).
    12. Sdanghi, G. & Maranzana, G. & Celzard, A. & Fierro, V., 2019. "Review of the current technologies and performances of hydrogen compression for stationary and automotive applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 150-170.
    13. Priesmann, Jan & Nolting, Lars & Praktiknjo, Aaron, 2019. "Are complex energy system models more accurate? An intra-model comparison of power system optimization models," Applied Energy, Elsevier, vol. 255(C).
    14. Mei, Bing & Barnoon, Pouya & Toghraie, Davood & Su, Chia-Hung & Nguyen, Hoang Chinh & Khan, Afrasyab, 2022. "Energy, exergy, environmental and economic analyzes (4E) and multi-objective optimization of a PEM fuel cell equipped with coolant channels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    15. Hoevenaars, Eric J. & Crawford, Curran A., 2012. "Implications of temporal resolution for modeling renewables-based power systems," Renewable Energy, Elsevier, vol. 41(C), pages 285-293.
    16. Sánchez, Antonio & Martín, Mariano & Zhang, Qi, 2021. "Optimal design of sustainable power-to-fuels supply chains for seasonal energy storage," Energy, Elsevier, vol. 234(C).
    17. Yue, Meiling & Lambert, Hugo & Pahon, Elodie & Roche, Robin & Jemei, Samir & Hissel, Daniel, 2021. "Hydrogen energy systems: A critical review of technologies, applications, trends and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    18. David Severin Ryberg & Martin Robinius & Detlef Stolten, 2018. "Evaluating Land Eligibility Constraints of Renewable Energy Sources in Europe," Energies, MDPI, vol. 11(5), pages 1-19, May.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Beckmann, Jonas & Klöckner, Kai & Letmathe, Peter, 2024. "Scenario-based multi-criteria evaluation of sector coupling-based technology pathways for decarbonization with varying degrees of disruption," Energy, Elsevier, vol. 297(C).
    2. Stefano Mingolla & Paolo Gabrielli & Alessandro Manzotti & Matthew J. Robson & Kevin Rouwenhorst & Francesco Ciucci & Giovanni Sansavini & Magdalena M. Klemun & Zhongming Lu, 2024. "Effects of emissions caps on the costs and feasibility of low-carbon hydrogen in the European ammonia industry," Nature Communications, Nature, vol. 15(1), pages 1-23, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Parrado-Hernando, Gonzalo & Pfeifer, Antun & Frechoso, Fernando & Miguel González, Luis Javier & Duić, Neven, 2022. "A novel approach to represent the energy system in integrated assessment models," Energy, Elsevier, vol. 258(C).
    2. Máté Zavarkó & Attila R. Imre & Gábor Pörzse & Zoltán Csedő, 2021. "Past, Present and Near Future: An Overview of Closed, Running and Planned Biomethanation Facilities in Europe," Energies, MDPI, vol. 14(18), pages 1-27, September.
    3. Kolb, Sebastian & Plankenbühler, Thomas & Frank, Jonas & Dettelbacher, Johannes & Ludwig, Ralf & Karl, Jürgen & Dillig, Marius, 2021. "Scenarios for the integration of renewable gases into the German natural gas market – A simulation-based optimisation approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    4. Bhandari, Ramchandra, 2022. "Green hydrogen production potential in West Africa – Case of Niger," Renewable Energy, Elsevier, vol. 196(C), pages 800-811.
    5. Kolb, Sebastian & Plankenbühler, Thomas & Hofmann, Katharina & Bergerson, Joule & Karl, Jürgen, 2021. "Life cycle greenhouse gas emissions of renewable gas technologies: A comparative review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    6. Kondziella, Hendrik & Specht, Karl & Lerch, Philipp & Scheller, Fabian & Bruckner, Thomas, 2023. "The techno-economic potential of large-scale hydrogen storage in Germany for a climate-neutral energy system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    7. Hren, Robert & Vujanović, Annamaria & Van Fan, Yee & Klemeš, Jiří Jaromír & Krajnc, Damjan & Čuček, Lidija, 2023. "Hydrogen production, storage and transport for renewable energy and chemicals: An environmental footprint assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    8. Zoltán Csedő & Máté Zavarkó & Balázs Vaszkun & Sára Koczkás, 2021. "Hydrogen Economy Development Opportunities by Inter-Organizational Digital Knowledge Networks," Sustainability, MDPI, vol. 13(16), pages 1-26, August.
    9. Razmjoo, Armin & Mirjalili, Seyedali & Aliehyaei, Mehdi & Østergaard, Poul Alberg & Ahmadi, Abolfazl & Majidi Nezhad, Meysam, 2022. "Development of smart energy systems for communities: technologies, policies and applications," Energy, Elsevier, vol. 248(C).
    10. Shruthi Patil & Leander Kotzur & Detlef Stolten, 2022. "Advanced Spatial and Technological Aggregation Scheme for Energy System Models," Energies, MDPI, vol. 15(24), pages 1-26, December.
    11. Fodstad, Marte & Crespo del Granado, Pedro & Hellemo, Lars & Knudsen, Brage Rugstad & Pisciella, Paolo & Silvast, Antti & Bordin, Chiara & Schmidt, Sarah & Straus, Julian, 2022. "Next frontiers in energy system modelling: A review on challenges and the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    12. M, Aravindan & V, Madhan Kumar & Hariharan, V.S. & Narahari, Tharun & P, Arun Kumar & K, Madhesh & G, Praveen Kumar & Prabakaran, Rajendran, 2023. "Fuelling the future: A review of non-renewable hydrogen production and storage techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
    13. Parrado-Hernando, Gonzalo & Herc, Luka & Pfeifer, Antun & Capellán-Perez, Iñigo & Batas Bjelić, Ilija & Duić, Neven & Frechoso-Escudero, Fernando & Miguel González, Luis Javier & Gjorgievski, Vladimir, 2022. "Capturing features of hourly-resolution energy models through statistical annual indicators," Renewable Energy, Elsevier, vol. 197(C), pages 1192-1223.
    14. Tsiklios, C. & Hermesmann, M. & Müller, T.E., 2022. "Hydrogen transport in large-scale transmission pipeline networks: Thermodynamic and environmental assessment of repurposed and new pipeline configurations," Applied Energy, Elsevier, vol. 327(C).
    15. Tola, Vittorio & Lonis, Francesco, 2021. "Low CO2 emissions chemically recuperated gas turbines fed by renewable methanol," Applied Energy, Elsevier, vol. 298(C).
    16. Cheng, Guang & Wang, Xiaoli & Chen, Kaiyuan & Zhang, Yang & Venkatesh, T.A. & Wang, Xiaolin & Li, Zunzhao & Yang, Jing, 2023. "Probing the effects of hydrogen on the materials used for large-scale transport of hydrogen through multi-scale simulations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
    17. Pashchenko, Dmitry, 2023. "Hydrogen-rich gas as a fuel for the gas turbines: A pathway to lower CO2 emission," Renewable and Sustainable Energy Reviews, Elsevier, vol. 173(C).
    18. Stefan Arens & Sunke Schlüters & Benedikt Hanke & Karsten von Maydell & Carsten Agert, 2020. "Sustainable Residential Energy Supply: A Literature Review-Based Morphological Analysis," Energies, MDPI, vol. 13(2), pages 1-28, January.
    19. Hao Guo & Hyeon-Jung Kim & Sang-Young Kim, 2022. "Research on Hydrogen Production by Water Electrolysis Using a Rotating Magnetic Field," Energies, MDPI, vol. 16(1), pages 1-11, December.
    20. Wang, Jing & Kang, Lixia & Liu, Yongzhong, 2022. "A multi-objective approach to determine time series aggregation strategies for optimal design of multi-energy systems," Energy, Elsevier, vol. 258(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:189:y:2024:i:pa:s1364032123007888. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.