IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v188y2023ics136403212300655x.html
   My bibliography  Save this article

High-resolution mapping of land use changes in Norwegian hydropower systems

Author

Listed:
  • Kenawi, M.S.
  • Alfredsen, K.
  • Stürzer, L.S.
  • Sandercock, B.K.
  • Bakken, T.H.

Abstract

The Transition towards sustainable energy systems requires phasing out fossil fuels. Hydropower is a key source of renewable energy and can contribute to reaching a 100 % low carbon-based energy system. Uncertainty remains about land cover changes due to hydropower deployment with a widespread perception of major losses in the land from inundation and associated habitat loss in the surrounding areas due to improved access and recreational use. Norway has a dominant share of hydropower generation in Europe with knowledge gaps in the associated land cover changes. We conducted one of the first retrospective analyses of land use change associated with hydropower development in Norway during the last 80 years. Using remote sensing data, we performed object-based analysis on sets of aerial images representing land systems before and after hydropower construction. We quantified the change in the land due to development of 40 hydropower schemes representing 24 % of the total Norwegian installed capacity. Our analysis revealed that 88 % of analyzed reservoirs were developed by regulating or expanding natural lakes. Vegetation growth was observed in the surrounding regions of 22 of 40 schemes, while urbanization was limited to only 0.9 % of the total surrounding area, primarily located within 400 m from reservoir's borders. Our findings provide insights into interaction between land use change and hydropower development in Norway. Our work provides a basis for further assessment of relevant environmental impacts and can be used to quantify expected land changes due to an increase in Norway's hydropower with integration into the European energy market.

Suggested Citation

  • Kenawi, M.S. & Alfredsen, K. & Stürzer, L.S. & Sandercock, B.K. & Bakken, T.H., 2023. "High-resolution mapping of land use changes in Norwegian hydropower systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 188(C).
  • Handle: RePEc:eee:rensus:v:188:y:2023:i:c:s136403212300655x
    DOI: 10.1016/j.rser.2023.113798
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212300655X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2023.113798?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Asher, Manshi & Bhandari, Prakash, 2021. "Mitigation or Myth? Impacts of Hydropower Development and Compensatory Afforestation on forest ecosystems in the high Himalayas," Land Use Policy, Elsevier, vol. 100(C).
    2. Ioannidis, Romanos & Koutsoyiannis, Demetris, 2020. "A review of land use, visibility and public perception of renewable energy in the context of landscape impact," Applied Energy, Elsevier, vol. 276(C).
    3. Abbas, Sawaid & Nichol, Janet E. & Wong, Man Sing, 2020. "Object-based, multi-sensor habitat mapping of successional age classes for effective management of a 70-year secondary forest succession," Land Use Policy, Elsevier, vol. 99(C).
    4. Ingeborg Graabak & Stefan Jaehnert & Magnus Korpås & Birger Mo, 2017. "Norway as a Battery for the Future European Power System—Impacts on the Hydropower System," Energies, MDPI, vol. 10(12), pages 1-25, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zida Song & Quan Liu & Zhigen Hu & Chunsheng Zhang & Jinming Ren & Zhexin Wang & Jianhai Tian, 2020. "Construction Diversion Risk Assessment for Hydropower Development on Sediment-Rich Rivers," Energies, MDPI, vol. 13(4), pages 1-20, February.
    2. G.-Fivos Sargentis & Nikos D. Lagaros & Giuseppe Leonardo Cascella & Demetris Koutsoyiannis, 2022. "Threats in Water–Energy–Food–Land Nexus by the 2022 Military and Economic Conflict," Land, MDPI, vol. 11(9), pages 1-19, September.
    3. Rana, Pushpendra & Fleischman, Forrest & Ramprasad, Vijay & Lee, Kangjae, 2022. "Predicting wasteful spending in tree planting programs in Indian Himalaya," World Development, Elsevier, vol. 154(C).
    4. Gordon, Joel A. & Balta-Ozkan, Nazmiye & Nabavi, Seyed Ali, 2022. "Beyond the triangle of renewable energy acceptance: The five dimensions of domestic hydrogen acceptance," Applied Energy, Elsevier, vol. 324(C).
    5. Alphan, H., 2021. "Modelling potential visibility of wind turbines: A geospatial approach for planning and impact mitigation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    6. Rebecca Peters & Jürgen Berlekamp & Ana Lucía & Vittoria Stefani & Klement Tockner & Christiane Zarfl, 2021. "Integrated Impact Assessment for Sustainable Hydropower Planning in the Vjosa Catchment (Greece, Albania)," Sustainability, MDPI, vol. 13(3), pages 1-18, February.
    7. Romeiro, Diogo Lisbona & Almeida, Edmar Luiz Fagundes de & Losekann, Luciano, 2020. "Systemic value of electricity sources – What we can learn from the Brazilian experience?," Energy Policy, Elsevier, vol. 138(C).
    8. Graabak, I. & Korpås, M. & Jaehnert, S. & Belsnes, M., 2019. "Balancing future variable wind and solar power production in Central-West Europe with Norwegian hydropower," Energy, Elsevier, vol. 168(C), pages 870-882.
    9. G.-Fivos Sargentis & Theano Iliopoulou & Stavroula Sigourou & Panayiotis Dimitriadis & Demetris Koutsoyiannis, 2020. "Evolution of Clustering Quantified by a Stochastic Method—Case Studies on Natural and Human Social Structures," Sustainability, MDPI, vol. 12(19), pages 1-22, September.
    10. Gustavo Gontijo & Songda Wang & Tamas Kerekes & Remus Teodorescu, 2020. "New AC–AC Modular Multilevel Converter Solution for Medium-Voltage Machine-Drive Applications: Modular Multilevel Series Converter," Energies, MDPI, vol. 13(14), pages 1-48, July.
    11. Ioannidis, R. & Mamassis, N. & Efstratiadis, A. & Koutsoyiannis, D., 2022. "Reversing visibility analysis: Towards an accelerated a priori assessment of landscape impacts of renewable energy projects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    12. Ela Romov & Na’ama Teschner, 2022. "A Place under the Sun: Planning, Landscape and Participation in a Case of a Solar Powerplant in the Israeli Desert," Sustainability, MDPI, vol. 14(13), pages 1-15, June.
    13. Guillot, Victor & Siggini, Gildas & Assoumou, Edi, 2023. "Interactions between land and grid development in the transition to a decarbonized European power system," Energy Policy, Elsevier, vol. 175(C).
    14. Astrid Buchmayr & Luc Van Ootegem & Jo Dewulf & Elsy Verhofstadt, 2021. "Understanding Attitudes towards Renewable Energy Technologies and the Effect of Local Experiences," Energies, MDPI, vol. 14(22), pages 1-23, November.
    15. Edita Tverijonaite & Anna Dóra Sæþórsdóttir, 2024. "Hydro, Wind, and Geothermal: Navigating the Compatibility of Renewable Energy Infrastructure with Tourism," Tourism and Hospitality, MDPI, vol. 5(1), pages 1-16, January.
    16. Aikaterini Roxani & Athanasios Zisos & Georgia-Konstantina Sakki & Andreas Efstratiadis, 2023. "Multidimensional Role of Agrovoltaics in Era of EU Green Deal: Current Status and Analysis of Water–Energy–Food–Land Dependencies," Land, MDPI, vol. 12(5), pages 1-20, May.
    17. G.-Fivos Sargentis & Paraskevi Siamparina & Georgia-Konstantina Sakki & Andreas Efstratiadis & Michalis Chiotinis & Demetris Koutsoyiannis, 2021. "Agricultural Land or Photovoltaic Parks? The Water–Energy–Food Nexus and Land Development Perspectives in the Thessaly Plain, Greece," Sustainability, MDPI, vol. 13(16), pages 1-19, August.
    18. Blom, Evelin & Söder, Lennart, 2024. "Single-level reduction of the hydropower area Equivalent bilevel problem for fast computation," Renewable Energy, Elsevier, vol. 225(C).
    19. Przemysław Śleszyński, 2021. "Multi-Item Assessment of Physiognomic Diversity of Geocomplexes as a Comprehensive Method of Visual-Aesthetic Landscape Assessment," Geographies, MDPI, vol. 1(1), pages 1-25, March.
    20. Alfredo Višković & Vladimir Franki & Angela Bašić-Šiško, 2022. "City-Level Transition to Low-Carbon Economy," Energies, MDPI, vol. 15(5), pages 1-24, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:188:y:2023:i:c:s136403212300655x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.