IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v170y2022ics1364032122008188.html
   My bibliography  Save this article

Optimal portfolio of a 100% renewable energy generation base supported by concentrating solar power

Author

Listed:
  • Yu, Yanghao
  • Du, Ershun
  • Chen, Zhichao
  • Su, Yibo
  • Zhang, Xianfeng
  • Yang, Hongbin
  • Wang, Peng
  • Zhang, Ning

Abstract

Due to the uneven distribution of renewable resources and electricity load centers in China, renewable energy usually needs to be delivered a long distance from the generation base to the load center. However, wind power and photovoltaic (PV) have to be bundled with flexible resources, such as thermal generators, to compensate for the generation uncertainty and variability. Concentrating solar power (CSP) is a controllable generation technology, and it is receiving great attention in the northwest China to be constructed in the 100% renewable energy generation base. This paper proposes a generation portfolio optimization model of a 100% renewable energy base supported by CSP. Firstly, a flexible operation model of CSP based on the interval theory is proposed. Then, a coordinated operation strategy of a 100% renewable energy base organized by CSP, wind power, PV and also energy storage is formulated. On this basis, a generation portfolio optimization model is established with the target of minimizing an extended levelized cost of energy (LCOE) considering the transmission cost. A case study of 100% renewable energy base in Qinghai Province, China, is conducted to verify the effectiveness of the proposed model. It is depicted that CSP plays an important role in the cost-effective portfolio and can be a better alternative to the combination of PV and storage. For the 100% renewable energy base in Qinghai, the LCOE with an optimal CSP, PV, wind, and storage combination is 0.5785 CNY/kWh, which is 20.3% lower than the case without the installation of a CSP station.

Suggested Citation

  • Yu, Yanghao & Du, Ershun & Chen, Zhichao & Su, Yibo & Zhang, Xianfeng & Yang, Hongbin & Wang, Peng & Zhang, Ning, 2022. "Optimal portfolio of a 100% renewable energy generation base supported by concentrating solar power," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
  • Handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008188
    DOI: 10.1016/j.rser.2022.112937
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122008188
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112937?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Keyif, Enes & Hornung, Michael & Zhu, Wanshan, 2020. "Optimal configurations and operations of concentrating solar power plants under new market trends," Applied Energy, Elsevier, vol. 270(C).
    2. Parrado, C. & Girard, A. & Simon, F. & Fuentealba, E., 2016. "2050 LCOE (Levelized Cost of Energy) projection for a hybrid PV (photovoltaic)-CSP (concentrated solar power) plant in the Atacama Desert, Chile," Energy, Elsevier, vol. 94(C), pages 422-430.
    3. Martín, Helena & de la Hoz, Jordi & Velasco, Guillermo & Castilla, Miguel & García de Vicuña, José Luís, 2015. "Promotion of concentrating solar thermal power (CSP) in Spain: Performance analysis of the period 1998–2013," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 1052-1068.
    4. Hess, Denis, 2018. "The value of a dispatchable concentrating solar power transfer from Middle East and North Africa to Europe via point-to-point high voltage direct current lines," Applied Energy, Elsevier, vol. 221(C), pages 605-645.
    5. Li, Xin & Wu, Xian & Gui, De & Hua, Yawen & Guo, Panfeng, 2021. "Power system planning based on CSP-CHP system to integrate variable renewable energy," Energy, Elsevier, vol. 232(C).
    6. Santos-Alamillos, F.J. & Pozo-Vázquez, D. & Ruiz-Arias, J.A. & Von Bremen, L. & Tovar-Pescador, J., 2015. "Combining wind farms with concentrating solar plants to provide stable renewable power," Renewable Energy, Elsevier, vol. 76(C), pages 539-550.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mujammil Asdhiyoga Rahmanta & Rahmat Adiprasetya Al Hasibi & Handrea Bernando Tambunan & Ruly & Agussalim Syamsuddin & Indra Ardhanayudha Aditya & Benny Susanto, 2024. "Towards a Net Zero-Emission Electricity Generation System by Optimizing Renewable Energy Sources and Nuclear Power Plant," Energies, MDPI, vol. 17(8), pages 1-22, April.
    2. Wanlei Xue & Xin Zhao & Yan Li & Ying Mu & Haisheng Tan & Yixin Jia & Xuejie Wang & Huiru Zhao & Yihang Zhao, 2023. "Research on the Optimal Design of Seasonal Time-of-Use Tariff Based on the Price Elasticity of Electricity Demand," Energies, MDPI, vol. 16(4), pages 1-17, February.
    3. Lee, Chien-Chiang & Hussain, Jafar & Mu, Xian, 2024. "Renewable energy and carbon-neutral gaming: A holistic approach to sustainable electricity," Energy, Elsevier, vol. 297(C).
    4. Xiao, Yulong & Zou, Chongzhe & Dong, Mingqi & Chi, Hetian & Yan, Yulin & Jiang, Shulan, 2024. "Feasibility study: Economic and technical analysis of optimal configuration and operation of a hybrid CSP/PV/wind power cogeneration system with energy storage," Renewable Energy, Elsevier, vol. 225(C).
    5. Michas, Serafeim & Flamos, Alexandros, 2024. "Least-cost or sustainable? Exploring power sector transition pathways," Energy, Elsevier, vol. 296(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Mena, R. & Escobar, R. & Lorca, Á. & Negrete-Pincetic, M. & Olivares, D., 2019. "The impact of concentrated solar power in electric power systems: A Chilean case study," Applied Energy, Elsevier, vol. 235(C), pages 258-283.
    2. Georgios E. Arnaoutakis & Georgia Kefala & Eirini Dakanali & Dimitris Al. Katsaprakakis, 2022. "Combined Operation of Wind-Pumped Hydro Storage Plant with a Concentrating Solar Power Plant for Insular Systems: A Case Study for the Island of Rhodes," Energies, MDPI, vol. 15(18), pages 1-23, September.
    3. San Miguel, G. & Corona, B., 2018. "Economic viability of concentrated solar power under different regulatory frameworks in Spain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 205-218.
    4. Hu, Bangjie & Cai, Fulin & Tai, Nengling & Wang, Pei, 2024. "Dual-time scale optimal dispatch of the CSP-PV hybrid power plant considering dynamic operation," Energy, Elsevier, vol. 306(C).
    5. Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
    6. Mussard, Maxime, 2017. "Solar energy under cold climatic conditions: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 733-745.
    7. Keyif, Enes & Hornung, Michael & Zhu, Wanshan, 2020. "Optimal configurations and operations of concentrating solar power plants under new market trends," Applied Energy, Elsevier, vol. 270(C).
    8. Jiang, Sufan & Gao, Shan & Pan, Guangsheng & Zhao, Xin & Liu, Yu & Guo, Yasen & Wang, Sicheng, 2020. "A novel robust security constrained unit commitment model considering HVDC regulation," Applied Energy, Elsevier, vol. 278(C).
    9. Hoz, Jordi de la & Martín, Helena & Montalà, Montserrat & Matas, José & Guzman, Ramon, 2018. "Assessing the 2014 retroactive regulatory framework applied to the concentrating solar power systems in Spain," Applied Energy, Elsevier, vol. 212(C), pages 1377-1399.
    10. Sanzana Tabassum & Tanvin Rahman & Ashraf Ul Islam & Sumayya Rahman & Debopriya Roy Dipta & Shidhartho Roy & Naeem Mohammad & Nafiu Nawar & Eklas Hossain, 2021. "Solar Energy in the United States: Development, Challenges and Future Prospects," Energies, MDPI, vol. 14(23), pages 1-65, December.
    11. Dong-Hun Oh & Ho-Seung Kim & Bang-Wook Lee, 2021. "A Novel Diagnosis Method for Void Defects in HVDC Mass-Impregnated PPLP Cable Based on Partial Discharge Measurement," Energies, MDPI, vol. 14(8), pages 1-18, April.
    12. Vasallo, Manuel Jesús & Cojocaru, Emilian Gelu & Gegúndez, Manuel Emilio & Marín, Diego, 2021. "Application of data-based solar field models to optimal generation scheduling in concentrating solar power plants," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 190(C), pages 1130-1149.
    13. Alassi, Abdulrahman & Bañales, Santiago & Ellabban, Omar & Adam, Grain & MacIver, Callum, 2019. "HVDC Transmission: Technology Review, Market Trends and Future Outlook," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 530-554.
    14. Prasad, Abhnil A. & Taylor, Robert A. & Kay, Merlinde, 2017. "Assessment of solar and wind resource synergy in Australia," Applied Energy, Elsevier, vol. 190(C), pages 354-367.
    15. José Balibrea-Iniesta, 2020. "Economic Analysis of Renewable Energy Regulation in France: A Case Study for Photovoltaic Plants Based on Real Options," Energies, MDPI, vol. 13(11), pages 1-19, June.
    16. Qu, Chunzi & Bang, Rasmus Noss, 2024. "European Grid Development Modeling and Analysis: Established Frameworks, Research Trends, and Future Opportunities," Discussion Papers 2024/11, Norwegian School of Economics, Department of Business and Management Science.
    17. Sergio Coronas & Jordi de la Hoz & Àlex Alonso & Helena Martín, 2022. "23 Years of Development of the Solar Power Generation Sector in Spain: A Comprehensive Review of the Period 1998–2020 from a Regulatory Perspective," Energies, MDPI, vol. 15(4), pages 1-53, February.
    18. Zhao, Zhen-Yu & Chen, Yu-Long & Thomson, John Douglas, 2017. "Levelized cost of energy modeling for concentrated solar power projects: A China study," Energy, Elsevier, vol. 120(C), pages 117-127.
    19. Liu, Hongtao & Zhai, Rongrong & Patchigolla, Kumar & Turner, Peter & Yu, Xiaohan & Wang, Peng, 2023. "Multi-objective optimisation of a thermal-storage PV-CSP-wind hybrid power system in three operation modes," Energy, Elsevier, vol. 284(C).
    20. David Borge-Diez & Enrique Rosales-Asensio & Emin Açıkkalp & Daniel Alonso-Martínez, 2023. "Analysis of Power to Gas Technologies for Energy Intensive Industries in European Union," Energies, MDPI, vol. 16(1), pages 1-22, January.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:170:y:2022:i:c:s1364032122008188. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.