IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v364y2024ics0306261924005944.html
   My bibliography  Save this article

Towards CSP technology modeling in power system expansion planning

Author

Listed:
  • Norambuena-Guzmán, Valentina
  • Palma-Behnke, Rodrigo
  • Hernández-Moris, Catalina
  • Cerda, Maria Teresa
  • Flores-Quiroz, Ángela

Abstract

Power systems with a high level of renewable energy penetration face challenges due to the inherent properties of some renewable energy sources, such as their variability and uncertainty. These systems require reliable technologies capable of handling large ramps and flexibility needs. Concentrating Solar Power (CSP) has been identified as one solution, which has been researched and implemented in several countries. This paper presents a novel analysis and evaluation of the impacts of choosing an inadequate representation of CSP technology in power system planning tools. The current state of CSP in power system expansion planning in the literature is examined, providing a classification for the modeling of investment and operation of CSP plants. Based on a proposed analysis framework, different models and configurations for CSP plants are evaluated and applied to a 5-bus test system. One of the key findings is that the selected model highly impacts the computational effort (150% more processing time), the quality of the planning decision (14% more overall costs), and the total emissions (up to 52% more emissions). A storage-based model proves to be the most suitable option, considering the operation and investment costs, as well as computational burden. The selected model achieves a 1% error compared to the results obtained with a reference model, while also requiring 40% less computation effort. The proposed framework can be applied to other power system structures by choosing the best suited CSP modeling.

Suggested Citation

  • Norambuena-Guzmán, Valentina & Palma-Behnke, Rodrigo & Hernández-Moris, Catalina & Cerda, Maria Teresa & Flores-Quiroz, Ángela, 2024. "Towards CSP technology modeling in power system expansion planning," Applied Energy, Elsevier, vol. 364(C).
  • Handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005944
    DOI: 10.1016/j.apenergy.2024.123211
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261924005944
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2024.123211?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:364:y:2024:i:c:s0306261924005944. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.