IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v168y2022ics1364032122007699.html
   My bibliography  Save this article

Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation

Author

Listed:
  • Zabed, Hossain M.
  • Islam, Jahidul
  • Chowdhury, Faisal I.
  • Zhao, Mei
  • Awasthi, Mukesh Kumar
  • Nizami, Abdul-Sattar
  • Uddin, Jamal
  • Thomas, Sabu
  • Qi, Xianghui

Abstract

Over the past few decades, researchers have worked with copper oxide nanostructures (CONs) to explore their applications in renewable energy conversion and generation. However, the major limitations of this class of nanomaterials are poor electrical conductivity, undesirable optical properties, and low electrochemical capacity, which eventually reduce their catalytic performance in various electrochemical and photocatalytic devices used for energy conversion and generation. To overcome these limitations, an efficient strategy was proposed in which CONs are doped with metals. The metal-doped CONs (M-CONs) have exhibited excellent performances as photocatalysts and electrocatalysts in energy conversion and generation, which are comprehensively reviewed in this article. In particular, this review critically discusses M-CONs-based catalysts in terms of their synthesis methods, growth mechanisms, metal-doping mediated changes in key properties, and applications in energy conversion and generation. In addition, major challenges and future prospects for M-CONs in energy-related applications are also discussed. This systematic review is intended to serve as a guide for the further development of M-CONs-based catalysts, as well as other metal-doped transition metal oxides, as an emerging class of nanomaterials for renewable energy-related applications.

Suggested Citation

  • Zabed, Hossain M. & Islam, Jahidul & Chowdhury, Faisal I. & Zhao, Mei & Awasthi, Mukesh Kumar & Nizami, Abdul-Sattar & Uddin, Jamal & Thomas, Sabu & Qi, Xianghui, 2022. "Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
  • Handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007699
    DOI: 10.1016/j.rser.2022.112887
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122007699
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112887?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. C. Thangamani & M. Ponnar & P. Priyadharshini & P. Monisha & S. S. Gomathi & K. Pushpanathan, 2019. "MAGNETIC BEHAVIOR OF Ni-DOPED CuO NANOPARTICLES SYNTHESIZED BY MICROWAVE IRRADIATION METHOD," Surface Review and Letters (SRL), World Scientific Publishing Co. Pte. Ltd., vol. 26(05), pages 1-11, June.
    2. Dan-Ni Pei & Li Gong & Ai-Yong Zhang & Xing Zhang & Jie-Jie Chen & Yang Mu & Han-Qing Yu, 2015. "Defective titanium dioxide single crystals exposed by high-energy {001} facets for efficient oxygen reduction," Nature Communications, Nature, vol. 6(1), pages 1-10, December.
    3. Ooi, Xian Yih & Gao, Wei & Ong, Hwai Chyuan & Lee, Hwei Voon & Juan, Joon Ching & Chen, Wei Hsin & Lee, Keat Teong, 2019. "Overview on catalytic deoxygenation for biofuel synthesis using metal oxide supported catalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 834-852.
    4. Han, Xiangyu & Wang, Liang & Ling, Haoshu & Ge, Zhiwei & Lin, Xipeng & Dai, Xingjian & Chen, Haisheng, 2022. "Critical review of thermochemical energy storage systems based on cobalt, manganese, and copper oxides," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    5. Zhongzhou Yang & Yifan Xiao & Tongtong Jiao & Yang Zhang & Jing Chen & Ying Gao, 2020. "Effects of Copper Oxide Nanoparticles on the Growth of Rice ( Oryza Sativa L.) Seedlings and the Relevant Physiological Responses," IJERPH, MDPI, vol. 17(4), pages 1-11, February.
    6. Chiang, Chia-Ying & Shin, Yoon & Ehrman, Sheryl, 2016. "Dopant effects on conductivity in copper oxide photoelectrochemical cells," Applied Energy, Elsevier, vol. 164(C), pages 1039-1042.
    7. Asghar, M.I. & Zhang, J. & Wang, H. & Lund, P.D., 2017. "Device stability of perovskite solar cells – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 131-146.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mushtaq, Muhammad Asim & Arif, Muhammad & Yasin, Ghulam & Tabish, Mohammad & Kumar, Anuj & Ibraheem, Shumaila & Ye, Wen & Ajmal, Saira & Zhao, Jie & Li, Pengyan & Liu, Jianfang & Saad, Ali & Fang, Xia, 2023. "Recent developments in heterogeneous electrocatalysts for ambient nitrogen reduction to ammonia: Activity, challenges, and future perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 176(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Che Lah, Nurul Akmal, 2021. "Late transition metal nanocomplexes: Applications for renewable energy conversion and storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    2. Stefania Lucantonio & Andrea Di Giuliano & Leucio Rossi & Katia Gallucci, 2023. "Green Diesel Production via Deoxygenation Process: A Review," Energies, MDPI, vol. 16(2), pages 1-44, January.
    3. Ghorbani, Masoomeh & Solaimany Nazar, Ali Reza & Farhadian, Mehrdad & Tangestaninejad, Shahram, 2023. "Efficient tetracycline degradation and electricity production in photocatalytic fuel cell based on ZnO nanorod/BiOBr/UiO-66-NH2 photoanode and Cu2O/CuO photocathode," Energy, Elsevier, vol. 272(C).
    4. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    5. Zhang, Jingyi & Chang, Nathan & Fagerholm, Cara & Qiu, Ming & Shuai, Ling & Egan, Renate & Yuan, Chris, 2022. "Techno-economic and environmental sustainability of industrial-scale productions of perovskite solar cells," Renewable and Sustainable Energy Reviews, Elsevier, vol. 158(C).
    6. Jayaraman, K. & Paramasivan, Lavinsaa & Kiumarsi, Shaian, 2017. "Reasons for low penetration on the purchase of photovoltaic (PV) panel system among Malaysian landed property owners," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 562-571.
    7. Hafriz, R.S.R.M. & Shafizah, I. Nor & Arifin, N.A. & Salmiaton, A. & Yunus, R. & Yap, Y.H. Taufiq & Shamsuddin, A.H., 2021. "Effect of Ni/Malaysian dolomite catalyst synthesis technique on deoxygenation reaction activity of waste cooking oil," Renewable Energy, Elsevier, vol. 178(C), pages 128-143.
    8. Ali, Nasir & Rauf, Sajid & Kong, Weiguang & Ali, Shahid & Wang, Xiaoyu & Khesro, Amir & Yang, Chang Ping & Zhu, Bin & Wu, Huizhen, 2019. "An overview of the decompositions in organo-metal halide perovskites and shielding with 2-dimensional perovskites," Renewable and Sustainable Energy Reviews, Elsevier, vol. 109(C), pages 160-186.
    9. Gan, Di & Zhu, Peiwang & Xu, Haoran & Xie, Xiangyu & Chai, Fengyuan & Gong, Jueyuan & Li, Jiasong & Xiao, Gang, 2023. "Experimental and simulation study of Mn–Fe particles in a controllable-flow particle solar receiver for high-temperature thermochemical energy storage," Energy, Elsevier, vol. 282(C).
    10. Gracia-Amillo, Ana M. & Bardizza, Giorgio & Salis, Elena & Huld, Thomas & Dunlop, Ewan D., 2018. "Energy-based metric for analysis of organic PV devices in comparison with conventional industrial technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 76-89.
    11. Gang Xiao & Zhide Wang & Dong Ni & Peiwang Zhu, 2023. "Kinetics and Structural Optimization of Cobalt-Oxide Honeycomb Structures Based on Thermochemical Heat Storage," Energies, MDPI, vol. 16(7), pages 1-19, April.
    12. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2021. "Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity," Renewable Energy, Elsevier, vol. 163(C), pages 1569-1579.
    13. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2019. "Colour properties and glazing factors evaluation of multicrystalline based semi-transparent Photovoltaic-vacuum glazing for BIPV application," Renewable Energy, Elsevier, vol. 131(C), pages 730-736.
    14. Ghosh, Aritra & Sundaram, Senthilarasu & Mallick, Tapas K., 2018. "Investigation of thermal and electrical performances of a combined semi-transparent PV-vacuum glazing," Applied Energy, Elsevier, vol. 228(C), pages 1591-1600.
    15. Ghosh, Aritra & Norton, Brian, 2018. "Advances in switchable and highly insulating autonomous (self-powered) glazing systems for adaptive low energy buildings," Renewable Energy, Elsevier, vol. 126(C), pages 1003-1031.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:168:y:2022:i:c:s1364032122007699. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.