IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v164y2016icp1039-1042.html
   My bibliography  Save this article

Dopant effects on conductivity in copper oxide photoelectrochemical cells

Author

Listed:
  • Chiang, Chia-Ying
  • Shin, Yoon
  • Ehrman, Sheryl

Abstract

Hydrogen generation from water splitting reaction with the energy from sunlight via a photoelectrochemical (PEC) cell is one of the ultimate goals in the renewable energy field. In the PEC process, energetic excited electrons can go through fast recombination with the holes, resulting in photon energy waste and lowering the solar to hydrogen conversion efficiency. So it is essential to increase the conductivity and lower the resistance of the photoelectrodes. Here, copper oxide thin film was chosen for the demonstration of the importance for the conductivity of the film toward the photocurrent density generation. By doping with Li, Ni, Co, Ag, Zn and Mg, the conductivity of the films increases from 3×10−6S/cm for the intrinsic CuO film to up to 10−4S/cm, two orders of magnitude higher, and thus leading to up to four folds increase in photocurrent density. On the other hand, the addition of Cr, Fe, and Mn introduced into CuO film leads to lower conductivity, to 10−8–10−9S/cm, and leads to a significant decrease of the photocurrent density. A correlation between the photocurrent density and conductivity is also reported in this study.

Suggested Citation

  • Chiang, Chia-Ying & Shin, Yoon & Ehrman, Sheryl, 2016. "Dopant effects on conductivity in copper oxide photoelectrochemical cells," Applied Energy, Elsevier, vol. 164(C), pages 1039-1042.
  • Handle: RePEc:eee:appene:v:164:y:2016:i:c:p:1039-1042
    DOI: 10.1016/j.apenergy.2015.01.116
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915001531
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.01.116?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zabed, Hossain M. & Islam, Jahidul & Chowdhury, Faisal I. & Zhao, Mei & Awasthi, Mukesh Kumar & Nizami, Abdul-Sattar & Uddin, Jamal & Thomas, Sabu & Qi, Xianghui, 2022. "Recent insights into heterometal-doped copper oxide nanostructure-based catalysts for renewable energy conversion and generation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    2. Kumar, Dheeraj & Sharma, Surbhi & Khare, Neeraj, 2021. "Piezo-phototronic and plasmonic effect coupled Ag-NaNbO3 nanocomposite for enhanced photocatalytic and photoelectrochemical water splitting activity," Renewable Energy, Elsevier, vol. 163(C), pages 1569-1579.
    3. Ghorbani, Masoomeh & Solaimany Nazar, Ali Reza & Farhadian, Mehrdad & Tangestaninejad, Shahram, 2023. "Efficient tetracycline degradation and electricity production in photocatalytic fuel cell based on ZnO nanorod/BiOBr/UiO-66-NH2 photoanode and Cu2O/CuO photocathode," Energy, Elsevier, vol. 272(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:164:y:2016:i:c:p:1039-1042. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.