IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v161y2022ics1364032122003318.html
   My bibliography  Save this article

Carbon-dioxide-to-methanol intensification with supersonic separators: Extra-carbonated natural gas purification via carbon capture and utilization

Author

Listed:
  • Arinelli, Lara de Oliveira
  • Brigagão, George Victor
  • Wiesberg, Igor Lapenda
  • Teixeira, Alexandre Mendonça
  • de Medeiros, José Luiz
  • Araújo, Ofélia de Queiroz F.

Abstract

A novel carbon-capture-and-utilization route from extra-carbonated natural gas using low-cost/low-carbon chloralkali hydrogen is disclosed. Methanol and methane-rich gas are produced without direct carbon emissions and also with low indirect emissions assuming the local electricity-matrix as 87% non-emitting. Carbon dioxide removed from raw natural gas via cryogenic extractive distillation with methanol entrainer, feeds a new Carbon-Dioxide-to-Methanol hydrogenation route intensified by supersonic separators with liquid water injection for greater methanol conversion per pass in the synthesis-loop and greater methanol recovery in the separation system. Intensified Carbon-Dioxide-to-Methanol is designed economically optimizing water/methanol injection-ratios and maximum Mach numbers of supersonic separators. Extra-carbonated natural gas processing coupled to intensified Carbon-Dioxide-to-Methanol is techno-economically assessed, demonstrating that supersonic intensification entails 2% greater methanol production, 11% less power consumption and 7.5% greater net value comparatively to non-intensified counterpart. The intensified process removes 99.2% of CO2 from extra-carbonated gas and was analyzed at two methanol scales [8021.5 t/d, 1692.3 t/d] giving, respectively, [9.5, 41.5] payback-years, and [2896.4MMUSD, 41.37MMUSD] net values (60years). A critical feasibility factor is low-cost/low-carbon by-product hydrogen from chloralkali industries, for which the break-even prices were respectively evaluated for the two scales as [685USD/tH2, 358USD/tH2]. A third, better and safer, option is to couple intensified Carbon-Dioxide-to-Methanol to large-scale Carbon-Dioxide-to-Enhanced-Oil-Recovery providing hedging against insufficient offer of low-cost/low-carbon hydrogen while practically keeping the project net value (60years) despite twofold investment.

Suggested Citation

  • Arinelli, Lara de Oliveira & Brigagão, George Victor & Wiesberg, Igor Lapenda & Teixeira, Alexandre Mendonça & de Medeiros, José Luiz & Araújo, Ofélia de Queiroz F., 2022. "Carbon-dioxide-to-methanol intensification with supersonic separators: Extra-carbonated natural gas purification via carbon capture and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
  • Handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122003318
    DOI: 10.1016/j.rser.2022.112424
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122003318
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112424?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Neofytou, H. & Nikas, A. & Doukas, H., 2020. "Sustainable energy transition readiness: A multicriteria assessment index," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    2. Zhang, Zhien & Pan, Shu-Yuan & Li, Hao & Cai, Jianchao & Olabi, Abdul Ghani & Anthony, Edward John & Manovic, Vasilije, 2020. "Recent advances in carbon dioxide utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 125(C).
    3. Wiesberg, Igor Lapenda & Brigagão, George Victor & Araújo, Ofélia de Queiroz F. & de Medeiros, José Luiz, 2019. "Carbon dioxide management via exergy-based sustainability assessment: Carbon Capture and Storage versus conversion to methanol," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 720-732.
    4. Pérez-Fortes, Mar & Schöneberger, Jan C. & Boulamanti, Aikaterini & Tzimas, Evangelos, 2016. "Methanol synthesis using captured CO2 as raw material: Techno-economic and environmental assessment," Applied Energy, Elsevier, vol. 161(C), pages 718-732.
    5. Wang, Honglin & Liu, Yanrong & Laaksonen, Aatto & Krook-Riekkola, Anna & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "Carbon recycling – An immense resource and key to a smart climate engineering: A survey of technologies, cost and impurity impact," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    6. Mansilla, C. & Louyrette, J. & Albou, S. & Bourasseau, C. & Dautremont, S., 2013. "Economic competitiveness of off-peak hydrogen production today – A European comparison," Energy, Elsevier, vol. 55(C), pages 996-1001.
    7. Mikulčić, Hrvoje & Ridjan Skov, Iva & Dominković, Dominik Franjo & Wan Alwi, Sharifah Rafidah & Manan, Zainuddin Abdul & Tan, Raymond & Duić, Neven & Hidayah Mohamad, Siti Nur & Wang, Xuebin, 2019. "Flexible Carbon Capture and Utilization technologies in future energy systems and the utilization pathways of captured CO2," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    8. Lee, Dong-Yeon & Elgowainy, Amgad & Dai, Qiang, 2018. "Life cycle greenhouse gas emissions of hydrogen fuel production from chlor-alkali processes in the United States," Applied Energy, Elsevier, vol. 217(C), pages 467-479.
    9. Sayah, Anita K. & Sayah, Athena K., 2011. "Wind-hydrogen utilization for methanol production: An economy assessment in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3570-3574.
    10. Potrč, Sanja & Čuček, Lidija & Martin, Mariano & Kravanja, Zdravko, 2021. "Sustainable renewable energy supply networks optimization – The gradual transition to a renewable energy system within the European Union by 2050," Renewable and Sustainable Energy Reviews, Elsevier, vol. 146(C).
    11. Zhang, Hanfei & Desideri, Umberto, 2020. "Techno-economic optimization of power-to-methanol with co-electrolysis of CO2 and H2O in solid-oxide electrolyzers," Energy, Elsevier, vol. 199(C).
    12. N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    13. Sarkar, Susanjib & Kumar, Amit, 2010. "Biohydrogen production from forest and agricultural residues for upgrading of bitumen from oil sands," Energy, Elsevier, vol. 35(2), pages 582-591.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Li, Shujuan, 2024. "Evaluation of dynamic behaviors in varied swirling flows for high-pressure offshore natural gas supersonic dehydration," Energy, Elsevier, vol. 300(C).
    2. Wang, Shiwei & Wang, Chao & Ding, Hongbing & Zhang, Yu & Dong, Yuanyuan & Wen, Chuang, 2023. "Joule-Thomson effect and flow behavior for energy-efficient dehydration of high-pressure natural gas in supersonic separator," Energy, Elsevier, vol. 279(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lopes, J.V.M. & Bresciani, A.E. & Carvalho, K.M. & Kulay, L.A. & Alves, R.M.B., 2021. "Multi-criteria decision approach to select carbon dioxide and hydrogen sources as potential raw materials for the production of chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    2. Alexander García-Mariaca & Eva Llera-Sastresa, 2021. "Review on Carbon Capture in ICE Driven Transport," Energies, MDPI, vol. 14(21), pages 1-30, October.
    3. Tengku Nur Adibah Tengku Hassan & Azmi Mohd Shariff & Nor Faiqa Abd Aziz & Nur Farhana Ajua Mustafa & Lian See Tan & Hairul Nazirah Abdul Halim & Mustakimah Mohamed & Heri Hermansyah, 2023. "Aqueous Potassium Salt of L-Cysteine as Potential CO 2 Removal Solvent: An Investigation on Physicochemical Properties and CO 2 Loading Capacity," Sustainability, MDPI, vol. 15(15), pages 1-23, July.
    4. Bos, M.J. & Kersten, S.R.A. & Brilman, D.W.F., 2020. "Wind power to methanol: Renewable methanol production using electricity, electrolysis of water and CO2 air capture," Applied Energy, Elsevier, vol. 264(C).
    5. Kotowicz, Janusz & Węcel, Daniel & Brzęczek, Mateusz, 2021. "Analysis of the work of a “renewable” methanol production installation based ON H2 from electrolysis and CO2 from power plants," Energy, Elsevier, vol. 221(C).
    6. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    7. Byun, Manhee & Kim, Heehyang & Lee, Hyunjun & Lim, Dongjun & Lim, Hankwon, 2022. "Conceptual design for methanol steam reforming in serial packed-bed reactors and membrane filters: Economic and environmental perspectives," Energy, Elsevier, vol. 241(C).
    8. Lim, Dongjun & Lee, Boreum & Lee, Hyunjun & Byun, Manhee & Lim, Hankwon, 2022. "Projected cost analysis of hybrid methanol production from tri-reforming of methane integrated with various water electrolysis systems: Technical and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    9. Yoon, Ha-Jun & Seo, Seung-Kwon & Lee, Chul-Jin, 2022. "Multi-period optimization of hydrogen supply chain utilizing natural gas pipelines and byproduct hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    10. Zhang, Jingpeng & Li, Zhengwen & Zhang, Zhihe & Feng, Kai & Yan, Binhang, 2021. "Can thermocatalytic transformations of captured CO2 reduce CO2 emissions?," Applied Energy, Elsevier, vol. 281(C).
    11. Kim, Seokyoung & Dodds, Paul E. & Butnar, Isabela, 2024. "Technoeconomic characterisation of low-carbon liquid hydrocarbons production," Energy, Elsevier, vol. 294(C).
    12. Fernández-Dacosta, Cora & Shen, Li & Schakel, Wouter & Ramirez, Andrea & Kramer, Gert Jan, 2019. "Potential and challenges of low-carbon energy options: Comparative assessment of alternative fuels for the transport sector," Applied Energy, Elsevier, vol. 236(C), pages 590-606.
    13. Kotowicz, J. & Brzęczek, M., 2021. "Methods to increase the efficiency of production and purification installations of renewable methanol," Renewable Energy, Elsevier, vol. 177(C), pages 568-583.
    14. Sara Yasemi & Yasin Khalili & Ali Sanati & Mohammadreza Bagheri, 2023. "Carbon Capture and Storage: Application in the Oil and Gas Industry," Sustainability, MDPI, vol. 15(19), pages 1-32, October.
    15. Oghare Victor Ogidiama & Tariq Shamim, 2021. "Assessment of CO2 capture technologies for CO2 utilization in enhanced oil recovery," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 11(3), pages 432-444, June.
    16. Olateju, Babatunde & Kumar, Amit, 2013. "Techno-economic assessment of hydrogen production from underground coal gasification (UCG) in Western Canada with carbon capture and sequestration (CCS) for upgrading bitumen from oil sands," Applied Energy, Elsevier, vol. 111(C), pages 428-440.
    17. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    18. Olimpia Neagu, 2019. "The Link between Economic Complexity and Carbon Emissions in the European Union Countries: A Model Based on the Environmental Kuznets Curve (EKC) Approach," Sustainability, MDPI, vol. 11(17), pages 1-27, August.
    19. Kim, Dongin & Han, Jeehoon, 2020. "Comprehensive analysis of two catalytic processes to produce formic acid from carbon dioxide," Applied Energy, Elsevier, vol. 264(C).
    20. Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:161:y:2022:i:c:s1364032122003318. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.