IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121009060.html
   My bibliography  Save this article

Advancement in upconversion nanoparticles based NIR-driven photocatalysts

Author

Listed:
  • Ansari, Anees A.
  • Sillanpää, Mika

Abstract

It is important to harness near-infrared (NIR) light in the plentiful and naturally sustainable sunlight to maximize the consumption rate of the uncontaminated resources on the planet. With an increase in unusual nonlinear optical properties of upconversion nanoparticles (UCNPs) to transform longer wavelength (lower-energy) photons into lower wavelength (high-energy) photons, they are the most promising candidates for integration with semiconductors to produce NIR driven photocatalytic systems. A comprehensive overview is presented in the current report on UCNPs based NIR-driven photocatalysts. This review discussed the various synthesis methods used for the preparation of the UCNPs, to control the photophysical properties. We emphasized various issues on how to improve the emission efficiency as well as the photocatalytic performance of the as-designed photocatalysts. The fundamental developments to overcome the recent challenges along with UCNPs and the requirements for developing the most efficient UCNPs-based NIR-light-responsive photocatalysts are discussed. Recent achievements on light absorption capability enhancement through the formation of hetero-nanostructure or coupling with plasmonic or semiconductor NPs improve the production of reactive oxygen species (ROS), because of their strong absorption in UV/visible range. The produced ROS are accessible to decompose the organic contaminants from the earth under NIR-induced irradiation of laser light. In heterogeneous photocatalytic reactions, the high efficiency of the UCNPs photocatalyst requires an adequate design that minimizes the loss of electrons during excitation and maximizes the absorption of photons. Important efforts are required to develop hetero-nanostructures between UCNPs and low-energy bandgap materials to fabricate heterogeneous photocatalysis. These heterogeneous junctions improve the absorption ability under UV/visible/NIR sunlight, which will further expand the migration of photo-induced charge transporters throughout the excitation state. The dualistic UCNPs-based nanocomposites with p-n & n-n hetero-nanostructure, and ternary UCNPs-nanocomposites fabricated with various heterostructures were extensively explored, as well as their mechanism for improved NIR light-harvesting and separation/relocation of charges are thoroughly discussed.

Suggested Citation

  • Ansari, Anees A. & Sillanpää, Mika, 2021. "Advancement in upconversion nanoparticles based NIR-driven photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121009060
    DOI: 10.1016/j.rser.2021.111631
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121009060
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111631?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ong, Chin Boon & Ng, Law Yong & Mohammad, Abdul Wahab, 2018. "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 536-551.
    2. Feng Wang & Yu Han & Chin Seong Lim & Yunhao Lu & Juan Wang & Jun Xu & Hongyu Chen & Chun Zhang & Minghui Hong & Xiaogang Liu, 2010. "Simultaneous phase and size control of upconversion nanocrystals through lanthanide doping," Nature, Nature, vol. 463(7284), pages 1061-1065, February.
    3. Shihui Wen & Jiajia Zhou & Kezhi Zheng & Artur Bednarkiewicz & Xiaogang Liu & Dayong Jin, 2018. "Advances in highly doped upconversion nanoparticles," Nature Communications, Nature, vol. 9(1), pages 1-12, December.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yi Zhang & Pengpeng Lei & Xiaohui Zhu & Yong Zhang, 2021. "Full shell coating or cation exchange enhances luminescence," Nature Communications, Nature, vol. 12(1), pages 1-10, December.
    2. Xu, Shenming & Jiang, Jiangang & Ren, Wenyi & Wang, He & Zhang, Rui & Xie, Yingge & Chen, Yubin, 2020. "Construction of ZnO/CdS three-dimensional hierarchical photoelectrode for improved photoelectrochemical performance," Renewable Energy, Elsevier, vol. 153(C), pages 241-248.
    3. Diogo A. Gálico & Emille M. Rodrigues & Ilias Halimi & Juho Toivola & He Zhao & Jiahui Xu & Jani O. Moilanen & Xiaogang Liu & Eva Hemmer & Muralee Murugesu, 2024. "Confining single Er3+ ions in sub-3 nm NaYF4 nanoparticles to induce slow relaxation of the magnetisation," Nature Communications, Nature, vol. 15(1), pages 1-10, December.
    4. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    5. Sinar Mashuri, Salma Izati & Kasim, Muhd Firdaus & Mohd Kaus, Noor Haida & Tan, Yie Hua & Islam, Aminul & Rashid, Umer & Asikin-Mijan, N. & Andas, Jeyashelly & Taufiq-Yap, Y.H. & Yaakob, Muhamad Kamil, 2023. "Photo-response range extension of Z-scheme ZnO/CdS for LED-light-driven photo-active catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Changil Son & Jinyoung Kim & Dongwon Kang & Seojoung Park & Chaeyeong Ryu & Dahye Baek & Geonyoung Jeong & Sanggyun Jeong & Seonghyeon Ahn & Chanoong Lim & Yundon Jeong & Jeongin Eom & Jung-Hoon Park , 2024. "Behavioral biometric optical tactile sensor for instantaneous decoupling of dynamic touch signals in real time," Nature Communications, Nature, vol. 15(1), pages 1-13, December.
    7. Lei Lei & Yubin Wang & Weixin Xu & Renguang Ye & Youjie Hua & Degang Deng & Liang Chen & Paras N. Prasad & Shiqing Xu, 2022. "Manipulation of time-dependent multicolour evolution of X-ray excited afterglow in lanthanide-doped fluoride nanoparticles," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    8. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.
    9. Trivedi, S. & Prochowicz, D. & Kalam, A. & Tavakoli, M.M. & Yadav, P., 2021. "Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    10. Dongkyu Kang & Hyung Shik Kim & Soohyun Han & Yeonju Lee & Young-Pil Kim & Dong Yun Lee & Joonseok Lee, 2023. "A local water molecular-heating strategy for near-infrared long-lifetime imaging-guided photothermal therapy of glioblastoma," Nature Communications, Nature, vol. 14(1), pages 1-14, December.
    11. Xiao-Jing Liu & Yu-Hang Zhang & Rong-Yao Gao & Hua-Bing Jia & Qian-Qian Shao & Ya-Wen Hu & Li-Min Fu & Jian-Ping Zhang, 2024. "The Effects of Food on the Uptake and Excretion of Nano-Plastics by Daphnia magna," Sustainability, MDPI, vol. 16(10), pages 1-14, May.
    12. Zan Li & Hongkun Zhang & Wenrui Jiang, 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    13. Herbet B. Sales & Romualdo R. Menezes & Gelmires A. Neves & João J. N. de Souza & Jailson M. Ferreira & Laís Chantelle & André L. Menezes de Oliveira & Hélio de L. Lira, 2020. "Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    14. Yuhang Liang & Feng Li & Xiangyuan Cui & Taoyuze Lv & Catherine Stampfl & Simon P. Ringer & Xudong Yang & Jun Huang & Rongkun Zheng, 2024. "Toward stabilization of formamidinium lead iodide perovskites by defect control and composition engineering," Nature Communications, Nature, vol. 15(1), pages 1-12, December.
    15. Yanxin Zhang & Rongrong Wen & Jialing Hu & Daoming Guan & Xiaochen Qiu & Yunxiang Zhang & Daniel S. Kohane & Qian Liu, 2022. "Enhancement of single upconversion nanoparticle imaging by topologically segregated core-shell structure with inward energy migration," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    16. Long Yan & Jinshu Huang & Zhengce An & Qinyuan Zhang & Bo Zhou, 2024. "Spatiotemporal control of photochromic upconversion through interfacial energy transfer," Nature Communications, Nature, vol. 15(1), pages 1-9, December.
    17. Guowei Li & Shihui Jiang & Aijun Liu & Lixiang Ye & Jianxi Ke & Caiping Liu & Lian Chen & Yongsheng Liu & Maochun Hong, 2023. "Proof of crystal-field-perturbation-enhanced luminescence of lanthanide-doped nanocrystals through interstitial H+ doping," Nature Communications, Nature, vol. 14(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121009060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.