IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v145y2021ics1364032121003373.html
   My bibliography  Save this article

Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction

Author

Listed:
  • Trivedi, S.
  • Prochowicz, D.
  • Kalam, A.
  • Tavakoli, M.M.
  • Yadav, P.

Abstract

From decades, the solar-driven conversion of carbon dioxide (CO2) into other valuable chemical products has captured enormous interest of scientists as a promising route to tackle the global warming and energy crisis. Recently, all-inorganic lead halide perovskite quantum dots (ILHP QDs) have witnessed as a new class of materials for CO2 photoreduction owing to their outstanding optoelectronic properties and low-cost solution processing. This review summarizes the physicochemical properties and synthesis approaches of the ILHP QDs together with their advantages as photocatalysts for CO2 reduction. Particularly, strategies for improving the photocatalytic activity of these semiconductors are thoroughly summarized and discussed. Finally, we focus on limitations and favourable perspectives for the rational design of perovskite-based photocatalysts.

Suggested Citation

  • Trivedi, S. & Prochowicz, D. & Kalam, A. & Tavakoli, M.M. & Yadav, P., 2021. "Development of all-inorganic lead halide perovskites for carbon dioxide photoreduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
  • Handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003373
    DOI: 10.1016/j.rser.2021.111047
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121003373
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111047?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ong, Chin Boon & Ng, Law Yong & Mohammad, Abdul Wahab, 2018. "A review of ZnO nanoparticles as solar photocatalysts: Synthesis, mechanisms and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 536-551.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huang, Jianying & Xiang, Huimin & Ran, Ran & Zhou, Wei & Wang, Wei & Shao, Zongping, 2024. "Fundamental understanding in the performance-limiting factors of Cs2AgBiBr6-based perovskite photovoltaics," Renewable and Sustainable Energy Reviews, Elsevier, vol. 191(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zan Li & Hongkun Zhang & Wenrui Jiang, 2021. "Research on the Sustainable Heterogeneous Catalyst Development for Photocatalytic Treatment of Phenol," Sustainability, MDPI, vol. 13(9), pages 1-12, April.
    2. Herbet B. Sales & Romualdo R. Menezes & Gelmires A. Neves & João J. N. de Souza & Jailson M. Ferreira & Laís Chantelle & André L. Menezes de Oliveira & Hélio de L. Lira, 2020. "Development of Sustainable Heterogeneous Catalysts for the Photocatalytic Treatment of Effluents," Sustainability, MDPI, vol. 12(18), pages 1-18, September.
    3. Xu, Shenming & Jiang, Jiangang & Ren, Wenyi & Wang, He & Zhang, Rui & Xie, Yingge & Chen, Yubin, 2020. "Construction of ZnO/CdS three-dimensional hierarchical photoelectrode for improved photoelectrochemical performance," Renewable Energy, Elsevier, vol. 153(C), pages 241-248.
    4. Mamur, Hayati & Bhuiyan, M.R.A. & Korkmaz, Fatih & Nil, Mustafa, 2018. "A review on bismuth telluride (Bi2Te3) nanostructure for thermoelectric applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4159-4169.
    5. Sinar Mashuri, Salma Izati & Kasim, Muhd Firdaus & Mohd Kaus, Noor Haida & Tan, Yie Hua & Islam, Aminul & Rashid, Umer & Asikin-Mijan, N. & Andas, Jeyashelly & Taufiq-Yap, Y.H. & Yaakob, Muhamad Kamil, 2023. "Photo-response range extension of Z-scheme ZnO/CdS for LED-light-driven photo-active catalyst," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    6. Ansari, Anees A. & Sillanpää, Mika, 2021. "Advancement in upconversion nanoparticles based NIR-driven photocatalysts," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    7. Abdulrasheed, Abdulrahman & Jalil, Aishah Abdul & Gambo, Yahya & Ibrahim, Maryam & Hambali, Hambali Umar & Shahul Hamid, Muhamed Yusuf, 2019. "A review on catalyst development for dry reforming of methane to syngas: Recent advances," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 175-193.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:145:y:2021:i:c:s1364032121003373. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.