IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v151y2021ics1364032121008595.html
   My bibliography  Save this article

Targeted engineering of metal@hollow carbon spheres as nanoreactors for biomass hydrodeoxygenation

Author

Listed:
  • Kuang, Yongqi
  • Li, Hao

Abstract

Metal@hollow carbon spheres as nanoreactors (MHCSs) are receiving extensive attention in biomass hydrodeoxygenation (HDO) due to well-defined active site, confined void space, modifiable surface, and tunable mass transfer rate. All their exciting properties heavily depend on the controllable and ingenious design of the MHCSs with desired physical and chemical microenvironment. In this paper, different synthesis strategies, based on template approaches and encapsulation technologies, for the construction of oriented MHCSs have been comprehensively reviewed. Additionally, a distinctive viewpoint on structure-activity correlation of MHCSs is presented in terms of achieving perfect adjustment of geometric categories such as cavity size, pore structure, shell thickness, multi-shell structure. Furthermore, the functionalization chemical microenvironment of MHCSs is discussed, including heteroatomic doping engineering, surface functionalization and defect engineering. The potential prospects of novel multifunctional MHCSs for broader biomass valorization are proposed, providing guidance for the rational design of advanced catalysts for a highly efficient biomass refining system.

Suggested Citation

  • Kuang, Yongqi & Li, Hao, 2021. "Targeted engineering of metal@hollow carbon spheres as nanoreactors for biomass hydrodeoxygenation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
  • Handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008595
    DOI: 10.1016/j.rser.2021.111582
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032121008595
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2021.111582?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xinjiang Cui & Annette-Enrica Surkus & Kathrin Junge & Christoph Topf & Jörg Radnik & Carsten Kreyenschulte & Matthias Beller, 2016. "Highly selective hydrogenation of arenes using nanostructured ruthenium catalysts modified with a carbon–nitrogen matrix," Nature Communications, Nature, vol. 7(1), pages 1-8, September.
    2. Ching-Wei Tung & Ying-Ya Hsu & Yen-Ping Shen & Yixin Zheng & Ting-Shan Chan & Hwo-Shuenn Sheu & Yuan-Chung Cheng & Hao Ming Chen, 2015. "Reversible adapting layer produces robust single-crystal electrocatalyst for oxygen evolution," Nature Communications, Nature, vol. 6(1), pages 1-9, November.
    3. Li, Zhiyu & Jiang, Enchen & Xu, Xiwei & Sun, Yan & Tu, Ren, 2020. "Hydrodeoxygenation of phenols, acids, and ketones as model bio-oil for hydrocarbon fuel over Ni-based catalysts modified by Al, La and Ga," Renewable Energy, Elsevier, vol. 146(C), pages 1991-2007.
    4. Jianhua Sun & Jinshui Zhang & Mingwen Zhang & Markus Antonietti & Xianzhi Fu & Xinchen Wang, 2012. "Bioinspired hollow semiconductor nanospheres as photosynthetic nanoparticles," Nature Communications, Nature, vol. 3(1), pages 1-7, January.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhu, Yingbo & Ma, Yulong & Sun, Yonggang & Wang, Liqiong & Ding, Jie & Zhong, Yudan & Zhang, Juan & Wang, Lei & Li, Yuanyuan, 2023. "In-situ construction of N-doped hollow carbon polyhedral cage anchored Co-Ni dual binding sites as nanoreactor for efficient real lignin oil hydrodeoxygenation," Renewable Energy, Elsevier, vol. 217(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wu, Jiacong & Li, Chunmei & Dong, Hongjun & Zhang, Haibo & Han, Juan & Wang, Lei & Yu, Siyu & Wang, Yun, 2020. "Doping effect of metalloid group in graphitic carbon nitride molecular structure for significantly improved photocatalytic hydrogen production and photoelectric performance," Renewable Energy, Elsevier, vol. 157(C), pages 660-669.
    2. Lukas Grote & Martin Seyrich & Ralph Döhrmann & Sani Y. Harouna-Mayer & Federica Mancini & Emilis Kaziukenas & Irene Fernandez-Cuesta & Cecilia A. Zito & Olga Vasylieva & Felix Wittwer & Michal Odstrč, 2022. "Imaging Cu2O nanocube hollowing in solution by quantitative in situ X-ray ptychography," Nature Communications, Nature, vol. 13(1), pages 1-11, December.
    3. Gang Sun & Fu-Da Yu & Mi Lu & Qingjun Zhu & Yunshan Jiang & Yongzhi Mao & John A. McLeod & Jason Maley & Jian Wang & Jigang Zhou & Zhenbo Wang, 2022. "Surface chemical heterogeneous distribution in over-lithiated Li1+xCoO2 electrodes," Nature Communications, Nature, vol. 13(1), pages 1-10, December.
    4. Tae Yeon Kim & Jee Won Mok & Sang Hoon Hong & Sang Hoon Jeong & Hyunsik Choi & Sangbaie Shin & Choun-Ki Joo & Sei Kwang Hahn, 2022. "Wireless theranostic smart contact lens for monitoring and control of intraocular pressure in glaucoma," Nature Communications, Nature, vol. 13(1), pages 1-12, December.
    5. Ruiz-Cornejo, J.C. & Vivo-Vilches, J.F. & Sebastián, D. & Martínez-Huerta, M.V. & Lázaro, M.J., 2021. "Carbon nanofiber-supported tantalum oxides as durable catalyst for the oxygen evolution reaction in alkaline media," Renewable Energy, Elsevier, vol. 178(C), pages 307-317.
    6. Tran, Quoc Khanh & Ly, Hoang Vu & Kwon, Byeongwan & Kim, Seung-Soo & Kim, Jinsoo, 2021. "Catalytic hydrodeoxygenation of guaiacol as a model compound of woody bio-oil over Fe/AC and Ni/γ-Al2O3 catalysts," Renewable Energy, Elsevier, vol. 173(C), pages 886-895.
    7. Felix T. Haase & Arno Bergmann & Travis E. Jones & Janis Timoshenko & Antonia Herzog & Hyo Sang Jeon & Clara Rettenmaier & Beatriz Roldan Cuenya, 2022. "Size effects and active state formation of cobalt oxide nanoparticles during the oxygen evolution reaction," Nature Energy, Nature, vol. 7(8), pages 765-773, August.
    8. Zuraya Angeles-Olvera & Alfonso Crespo-Yapur & Oliver Rodríguez & Jorge L. Cholula-Díaz & Luz María Martínez & Marcelo Videa, 2022. "Nickel-Based Electrocatalysts for Water Electrolysis," Energies, MDPI, vol. 15(5), pages 1-35, February.
    9. Lv, Wei & Hu, Xiaohong & Zhu, Yuting & Xu, Ying & Liu, Shijun & Chen, Peili & Wang, Chenguang & Ma, Longlong, 2022. "Molybdenum oxide decorated Ru catalyst for enhancement of lignin oil hydrodeoxygenation to hydrocarbons," Renewable Energy, Elsevier, vol. 188(C), pages 195-210.
    10. Sihong Wang & Qu Jiang & Shenghong Ju & Chia-Shuo Hsu & Hao Ming Chen & Di Zhang & Fang Song, 2022. "Identifying the geometric catalytic active sites of crystalline cobalt oxyhydroxides for oxygen evolution reaction," Nature Communications, Nature, vol. 13(1), pages 1-12, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:151:y:2021:i:c:s1364032121008595. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.