IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v14y2010i8p2290-2297.html
   My bibliography  Save this article

Exploitation scale of hydropower based on instream flow requirements: A case from southwest China

Author

Listed:
  • Fang, Yiping
  • Wang, Mingjie
  • Deng, Wei
  • Xu, Keyan

Abstract

The maximum exploitation scale and rate of hydropower is the important scientific issue to which the researchers and policy-makers always pay close attention. In this paper, on basis of various assurance levels for instream flow and in accordance with the internal relation between installed capacity of the hydropower and discharge (flow), the calculation method for the maximum exploitation scale and rate of hydropower is discussed and the empirical test was conducted by southwest China case, the results show that: (1) The calculation of exploitation scale and rate of hydropower according to instream flow as well as the equilibrium point between installed capacity of the hydropower and discharge is a effective attempt and new approach. (2) In southwest China, at the same assurance level for instream flow, the hydropower exploitation scale and rate significantly vary in major rivers. Generally, the exploitation scale is large for the river with large theoretical potentials while small for the river with small theoretical potentials; as for the exploitation rate, basically the rule is opposite. (3) The river with the maximum hydropower exploitation rate is high generally lies in the industrialized, urbanized, and densely populated regions where the sensitivity of river ecosystem is relatively low; the river with low hydropower exploitation rate generally lies in eco-sensitive areas which has a high requirement on assurance level for instream flow. (4) The maximum, moderate and excellent exploitation rates of hydropower are 16%, 12% and 8% (based on theoretical potentials); 22%, 17% and 11% (based on technologically exploitable hydropower potentials); and 34%, 25% and 17% (based on economically exploitable hydropower potentials) respectively in southwest China.

Suggested Citation

  • Fang, Yiping & Wang, Mingjie & Deng, Wei & Xu, Keyan, 2010. "Exploitation scale of hydropower based on instream flow requirements: A case from southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2290-2297, October.
  • Handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2290-2297
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364-0321(10)00123-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Huang, Hailun & Yan, Zheng, 2009. "Present situation and future prospect of hydropower in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(6-7), pages 1652-1656, August.
    2. Balc[breve]iunas, Povilas & Zdankus, Narimantas, 2007. "Harmonization of hydropower plant with the environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(6), pages 1260-1274, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Jin & Xu, Linyu & Yu, Bing & Li, Xiaojin, 2014. "Environmentally feasible potential for hydropower development regarding environmental constraints," Energy Policy, Elsevier, vol. 73(C), pages 552-562.
    2. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    3. Ding, Ning & Duan, Jinhui & Xue, Song & Zeng, Ming & Shen, Jianfei, 2015. "Overall review of peaking power in China: Status quo, barriers and solutions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 503-516.
    4. Yi, Yujun & Cheng, Xi & Yang, Zhifeng & Wieprecht, Silke & Zhang, Shanghong & Wu, Yingjie, 2017. "Evaluating the ecological influence of hydraulic projects: A review of aquatic habitat suitability models," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 748-762.
    5. Ming, Zeng & Honglin, Li & Mingjuan, Ma & Na, Li & Song, Xue & Liang, Wang & Lilin, Peng, 2013. "Review on transaction status and relevant policies of southern route in China's West–East Power Transmission," Renewable Energy, Elsevier, vol. 60(C), pages 454-461.
    6. Wagner, Beatrice & Hauer, Christoph & Schoder, Angelika & Habersack, Helmut, 2015. "A review of hydropower in Austria: Past, present and future development," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 304-314.
    7. Fang, Yiping & Deng, Wei, 2011. "The critical scale and section management of cascade hydropower exploitation in Southwestern China," Energy, Elsevier, vol. 36(10), pages 5944-5953.
    8. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    9. Luisa Liucci & Daniela Valigi & Stefano Casadei, 2014. "A New Application of Flow Duration Curve (FDC) in Designing Run-of-River Power Plants," Water Resources Management: An International Journal, Published for the European Water Resources Association (EWRA), Springer;European Water Resources Association (EWRA), vol. 28(3), pages 881-895, February.
    10. Yakun Zhang & Wenzhe Tang & Colin F. Duffield & Lihai Zhang & Felix Kin Peng Hui, 2021. "Environment Management of Hydropower Development: A Case Study," Energies, MDPI, vol. 14(7), pages 1-12, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, Saeed & Mahmood, Anzar & Hasan, Ahmad & Sidhu, Guftaar Ahmad Sardar & Butt, Muhammad Fasih Uddin, 2016. "A comparative review of China, India and Pakistan renewable energy sectors and sharing opportunities," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 216-225.
    2. Ming, Zeng & Song, Xue & Mingjuan, Ma & Xiaoli, Zhu, 2013. "New energy bases and sustainable development in China: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 169-185.
    3. Chang, Jianxia & Li, Yunyun & Yuan, Meng & Wang, Yimin, 2017. "Efficiency evaluation of hydropower station operation: A case study of Longyangxia station in the Yellow River, China," Energy, Elsevier, vol. 135(C), pages 23-31.
    4. Spänhoff, Bernd, 2014. "Current status and future prospects of hydropower in Saxony (Germany) compared to trends in Germany, the European Union and the World," Renewable and Sustainable Energy Reviews, Elsevier, vol. 30(C), pages 518-525.
    5. Pang, Mingyue & Zhang, Lixiao & Bahaj, AbuBakr S. & Xu, Kaipeng & Hao, Yan & Wang, Changbo, 2018. "Small hydropower development in Tibet: Insight from a survey in Nagqu Prefecture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 3032-3040.
    6. Shaohua Hu & Xinlong Zhou & Yi Luo & Guang Zhang, 2019. "Numerical Simulation Three-Dimensional Nonlinear Seepage in a Pumped-Storage Power Station: Case Study," Energies, MDPI, vol. 12(1), pages 1-15, January.
    7. Wang, Qiang & Chen, Yong, 2010. "Status and outlook of China's free-carbon electricity," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1014-1025, April.
    8. Fan, Jin & Wang, Shanyong & Wu, Yanrui & Li, Jun & Zhao, Dingtao, 2015. "Buffer effect and price effect of a personal carbon trading scheme," Energy, Elsevier, vol. 82(C), pages 601-610.
    9. Feng, Kuishuang & Hubacek, Klaus & Siu, Yim Ling & Li, Xin, 2014. "The energy and water nexus in Chinese electricity production: A hybrid life cycle analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 342-355.
    10. Zhang, Jing & Luo, Chuan-Yan & Curtis, Zachary & Deng, Shi-huai & Wu, Yang & Li, Yuan-wei, 2015. "Carbon dioxide emission accounting for small hydropower plants—A case study in southwest China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 755-761.
    11. Zhang, Dahai & Wang, Jiaqi & Lin, Yonggang & Si, Yulin & Huang, Can & Yang, Jing & Huang, Bin & Li, Wei, 2017. "Present situation and future prospect of renewable energy in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 865-871.
    12. Rahman, Md Momtazur & Khan, Imran & Field, David Luke & Techato, Kuaanan & Alameh, Kamal, 2022. "Powering agriculture: Present status, future potential, and challenges of renewable energy applications," Renewable Energy, Elsevier, vol. 188(C), pages 731-749.
    13. Zhou, Jianzhong & Zhang, Yongchuan & Zhang, Rui & Ouyang, Shuo & Wang, Xuemin & Liao, Xiang, 2015. "Integrated optimization of hydroelectric energy in the upper and middle Yangtze River," Renewable and Sustainable Energy Reviews, Elsevier, vol. 45(C), pages 481-512.
    14. Ma, Hengyun & Oxley, Les & Gibson, John & Li, Wen, 2010. "A survey of China's renewable energy economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 438-445, January.
    15. World Bank, 2012. "Trade and Investment Policies to Promote Climate Friendly Technologies in APEC Economies," World Bank Publications - Reports 13038, The World Bank Group.
    16. Cheng, Chun-Tian & Shen, Jian-Jian & Wu, Xin-Yu & Chau, Kwok-wing, 2012. "Operation challenges for fast-growing China's hydropower systems and respondence to energy saving and emission reduction," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(5), pages 2386-2393.
    17. Shakouri G., H. & Aliakbarisani, S., 2016. "At what valuation of sustainability can we abandon fossil fuels? A comprehensive multistage decision support model for electricity planning," Energy, Elsevier, vol. 107(C), pages 60-77.
    18. Zhang, Jin & Xu, Linyu & Li, Xiaojin, 2015. "Review on the externalities of hydropower: A comparison between large and small hydropower projects in Tibet based on the CO2 equivalent," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 176-185.
    19. Zhang, Yuning & Zhang, Yuning & Qian, Zhongdong & Ji, Bin & Wu, Yulin, 2016. "A review of microscopic interactions between cavitation bubbles and particles in silt-laden flow," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 303-318.
    20. Liu, Jian & Zuo, Jian & Sun, Zhiyu & Zillante, George & Chen, Xianming, 2013. "Sustainability in hydropower development—A case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 230-237.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:14:y:2010:i:8:p:2290-2297. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.