IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v120y2020ics1364032119308676.html
   My bibliography  Save this article

Fast frequency control ancillary services: An international review

Author

Listed:
  • Fernández-Muñoz, Daniel
  • Pérez-Díaz, Juan I.
  • Guisández, Ignacio
  • Chazarra, Manuel
  • Fernández-Espina, Álvaro

Abstract

This paper describes the frequency control ancillary services (FCAS) that value the response speed of the frequency control resources and/or can only be provided, without curtailing available renewable energy, by inverter-coupled generation or storage technologies, which have, to date, been implemented or proposed all over the world. These services are referred to in the paper as fast frequency control ancillary services (FFCAS). The paper describes, among others, the following characteristics of the identified FFCAS: maximum response time, minimum time during which the response must be sustained, markets (if any) in which the agents can/must submit bids to provide the service, characteristics of the offers, whether the service is remunerated for the reserved capacity and/or the energy delivered, whether or not the service payment is performance-based, formulas used to determine the service payment, whether or not there exists a specific regulation signal for fast-acting resources, evolution of the service price. In addition, the paper describes a few FCAS which, though cannot be strictly speaking considered FFCAS, have a particularly demanding response time requirement.

Suggested Citation

  • Fernández-Muñoz, Daniel & Pérez-Díaz, Juan I. & Guisández, Ignacio & Chazarra, Manuel & Fernández-Espina, Álvaro, 2020. "Fast frequency control ancillary services: An international review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
  • Handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308676
    DOI: 10.1016/j.rser.2019.109662
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032119308676
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2019.109662?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tielens, Pieter & Van Hertem, Dirk, 2016. "The relevance of inertia in power systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 999-1009.
    2. Henriot, Arthur, 2015. "Economic curtailment of intermittent renewable energy sources," Energy Economics, Elsevier, vol. 49(C), pages 370-379.
    3. Wang, Jianxiao & Zhong, Haiwang & Tang, Wenyuan & Rajagopal, Ram & Xia, Qing & Kang, Chongqing & Wang, Yi, 2017. "Optimal bidding strategy for microgrids in joint energy and ancillary service markets considering flexible ramping products," Applied Energy, Elsevier, vol. 205(C), pages 294-303.
    4. Greenwood, D.M. & Lim, K.Y. & Patsios, C. & Lyons, P.F. & Lim, Y.S. & Taylor, P.C., 2017. "Frequency response services designed for energy storage," Applied Energy, Elsevier, vol. 203(C), pages 115-127.
    5. Sakti, Apurba & Botterud, Audun & O’Sullivan, Francis, 2018. "Review of wholesale markets and regulations for advanced energy storage services in the United States: Current status and path forward," Energy Policy, Elsevier, vol. 120(C), pages 569-579.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Mingze & Li, Weidong & Yu, Samson Shenglong & Wang, Haixia & Ba, Yu, 2024. "Optimal day-ahead large-scale battery dispatch model for multi-regulation participation considering full timescale uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PB).
    2. Sevdari, Kristian & Calearo, Lisa & Andersen, Peter Bach & Marinelli, Mattia, 2022. "Ancillary services and electric vehicles: An overview from charging clusters and chargers technology perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    3. Rancilio, G. & Rossi, A. & Falabretti, D. & Galliani, A. & Merlo, M., 2022. "Ancillary services markets in europe: Evolution and regulatory trade-offs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
    4. Shin, Wooyoung & Lee, Choongman & Chung, In-Young & Lim, Jingon & Youn, Juyoung & Rhie, Younghoon & Hur, Kyeon & Shim, Jae Woong, 2022. "Reserve replacement from governor to energy storage system on conventional generator for operating-cost reduction," Applied Energy, Elsevier, vol. 324(C).
    5. Kumar, T. Bharath & Singh, Anoop, 2021. "Ancillary services in the Indian power sector – A look at recent developments and prospects," Energy Policy, Elsevier, vol. 149(C).
    6. Abdul Mannan Rauf & Mohamed Abdel-Monem & Thomas Geury & Omar Hegazy, 2023. "A Review on Multilevel Converters for Efficient Integration of Battery Systems in Stationary Applications," Energies, MDPI, vol. 16(10), pages 1-38, May.
    7. Prakash, Abhijith & Bruce, Anna & MacGill, Iain, 2022. "Insights on designing effective and efficient frequency control arrangements from the Australian National Electricity Market," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    8. Li, Longxi & Cao, Xilin, 2022. "Comprehensive effectiveness assessment of energy storage incentive mechanisms for PV-ESS projects based on compound real options," Energy, Elsevier, vol. 239(PA).
    9. Agostini, Claudio A. & Armijo, Franco A. & Silva, Carlos & Nasirov, Shahriyar, 2021. "The role of frequency regulation remuneration schemes in an energy matrix with high penetration of renewable energy," Renewable Energy, Elsevier, vol. 171(C), pages 1097-1114.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Homan, Samuel & Mac Dowell, Niall & Brown, Solomon, 2021. "Grid frequency volatility in future low inertia scenarios: Challenges and mitigation options," Applied Energy, Elsevier, vol. 290(C).
    2. Juan I. Pérez‐Díaz & Marcos Lafoz & Frank Burke, 2020. "Integration of fast acting energy storage systems in existing pumped‐storage power plants to enhance the system's frequency control," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 9(2), March.
    3. Cabrera-Tobar, Ana & Bullich-Massagué, Eduard & Aragüés-Peñalba, Mònica & Gomis-Bellmunt, Oriol, 2016. "Review of advanced grid requirements for the integration of large scale photovoltaic power plants in the transmission system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 971-987.
    4. Fabietti, Luca & Qureshi, Faran A. & Gorecki, Tomasz T. & Salzmann, Christophe & Jones, Colin N., 2018. "Multi-time scale coordination of complementary resources for the provision of ancillary services," Applied Energy, Elsevier, vol. 229(C), pages 1164-1180.
    5. Pablo González-Inostroza & Claudia Rahmann & Ricardo Álvarez & Jannik Haas & Wolfgang Nowak & Christian Rehtanz, 2021. "The Role of Fast Frequency Response of Energy Storage Systems and Renewables for Ensuring Frequency Stability in Future Low-Inertia Power Systems," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    6. Bogdanov, Dmitrii & Toktarova, Alla & Breyer, Christian, 2019. "Transition towards 100% renewable power and heat supply for energy intensive economies and severe continental climate conditions: Case for Kazakhstan," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    7. Parwal, Arvind & Fregelius, Martin & Temiz, Irinia & Göteman, Malin & Oliveira, Janaina G. de & Boström, Cecilia & Leijon, Mats, 2018. "Energy management for a grid-connected wave energy park through a hybrid energy storage system," Applied Energy, Elsevier, vol. 231(C), pages 399-411.
    8. Fernández-Guillamón, Ana & Gómez-Lázaro, Emilio & Muljadi, Eduard & Molina-García, Ángel, 2019. "Power systems with high renewable energy sources: A review of inertia and frequency control strategies over time," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    9. Wadim Strielkowski & Dalia Streimikiene & Alena Fomina & Elena Semenova, 2019. "Internet of Energy (IoE) and High-Renewables Electricity System Market Design," Energies, MDPI, vol. 12(24), pages 1-17, December.
    10. Abhimanyu Kaushal & Dirk Van Hertem, 2019. "An Overview of Ancillary Services and HVDC Systems in European Context," Energies, MDPI, vol. 12(18), pages 1-20, September.
    11. Pusceddu, Elian & Zakeri, Behnam & Castagneto Gissey, Giorgio, 2021. "Synergies between energy arbitrage and fast frequency response for battery energy storage systems," Applied Energy, Elsevier, vol. 283(C).
    12. Eleftherios Vlahakis & Leonidas Dritsas & George Halikias, 2019. "Distributed LQR Design for a Class of Large-Scale Multi-Area Power Systems," Energies, MDPI, vol. 12(14), pages 1-28, July.
    13. Dario Garozzo & Giuseppe Marco Tina, 2020. "Evaluation of the Effective Active Power Reserve for Fast Frequency Response of PV with BESS Inverters Considering Reactive Power Control," Energies, MDPI, vol. 13(13), pages 1-16, July.
    14. Florian Errigo & Leandro De Oliveira Porto & Florent Morel, 2022. "Design Methodology Based on Prebuilt Components for Modular Multilevel Converters with Partial Integration of Energy Storage Systems," Energies, MDPI, vol. 15(14), pages 1-18, July.
    15. Cong Liu & Jingyang Zhou & Yi Pan & Zhiyi Li & Yifei Wang & Dan Xu & Qiang Ding & Zhiqiang Luo & Mohammad Shahidehpour, 2019. "Multi-period Market Operation of Transmission-Distribution Systems Based on Heterogeneous Decomposition and Coordination," Energies, MDPI, vol. 12(16), pages 1-20, August.
    16. Junfeng Qi & Fei Tang & Jiarui Xie & Xinang Li & Xiaoqing Wei & Zhuo Liu, 2022. "Research on Frequency Response Modeling and Frequency Modulation Parameters of the Power System Highly Penetrated by Wind Power," Sustainability, MDPI, vol. 14(13), pages 1-19, June.
    17. Rious, Vincent & Perez, Yannick & Roques, Fabien, 2015. "Which electricity market design to encourage the development of demand response?," Economic Analysis and Policy, Elsevier, vol. 48(C), pages 128-138.
    18. Hyeongpil Bang & Dwi Riana Aryani & Hwachang Song, 2021. "Application of Battery Energy Storage Systems for Relief of Generation Curtailment in Terms of Transient Stability," Energies, MDPI, vol. 14(13), pages 1-14, June.
    19. Yingying Jiang & Xiaolin Chen & Sui Peng & Xiao Du & Dan Xu & Junjie Tang & Wenyuan Li, 2019. "Study on Emergency Load Shedding of Hybrid AC/DC Receiving-End Power Grid with Stochastic, Static Characteristics-Dependent Load Model," Energies, MDPI, vol. 12(20), pages 1-20, October.
    20. Rezaei, Navid & Pezhmani, Yasin & Khazali, Amirhossein, 2022. "Economic-environmental risk-averse optimal heat and power energy management of a grid-connected multi microgrid system considering demand response and bidding strategy," Energy, Elsevier, vol. 240(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:120:y:2020:i:c:s1364032119308676. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.