IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v97y2016icp1-7.html
   My bibliography  Save this article

Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy

Author

Listed:
  • Ju, Chao
  • Zhou, Yuping
  • He, Mingli
  • Wu, Qiuying
  • Fang, Yunming

Abstract

A high yield jet fuel production process by integration of rational feedstock selection and selective hydro-isomerization was proposed and reported in this paper. A Pt/ZSM-12 catalyst was found to be an effective catalyst for the conversion of n-C15 paraffin into multi-branched isomers and mono-branched isomers which satisfied the jet fuel specification. Based on this finding, by integration of feedstock selection, oxygen removing mechanism control and selective hydro-isomerization, a very high weight yield (60%) of algal lipid to jet fuel can be obtained. The obtained jet fuel satisfied the specification of ASTM 7566 standard. Such high jet fuel yield can obviously improve the economics of jet fuel production technology.

Suggested Citation

  • Ju, Chao & Zhou, Yuping & He, Mingli & Wu, Qiuying & Fang, Yunming, 2016. "Improvement of selectivity from lipid to jet fuel by rational integration of feedstock properties and catalytic strategy," Renewable Energy, Elsevier, vol. 97(C), pages 1-7.
  • Handle: RePEc:eee:renene:v:97:y:2016:i:c:p:1-7
    DOI: 10.1016/j.renene.2016.05.075
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148116304852
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2016.05.075?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Fortier, Marie-Odile P. & Roberts, Griffin W. & Stagg-Williams, Susan M. & Sturm, Belinda S.M., 2014. "Life cycle assessment of bio-jet fuel from hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 122(C), pages 73-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ju, Chao & Wang, Feng & Huang, Yong & Fang, Yunming, 2018. "Selective extraction of neutral lipid from wet algae paste and subsequently hydroconversion into renewable jet fuel," Renewable Energy, Elsevier, vol. 118(C), pages 521-526.
    2. Li, Shiliang & Li, Yanqi & Wu, Jun & Wang, Zheng & Wang, Fang & Deng, Li & Nie, Kaili, 2020. "Synthesis of low pour point bio-aviation fuel from renewable abietic acid," Renewable Energy, Elsevier, vol. 155(C), pages 1042-1050.
    3. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atsonios, Konstantinos & Kougioumtzis, Michael-Alexander & D. Panopoulos, Kyriakos & Kakaras, Emmanuel, 2015. "Alternative thermochemical routes for aviation biofuels via alcohols synthesis: Process modeling, techno-economic assessment and comparison," Applied Energy, Elsevier, vol. 138(C), pages 346-366.
    2. Kargbo, Hannah & Harris, Jonathan Stuart & Phan, Anh N., 2021. "“Drop-in” fuel production from biomass: Critical review on techno-economic feasibility and sustainability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    3. Raquel de Souza Deuber & Jéssica Marcon Bressanin & Daniel Santos Fernandes & Henrique Real Guimarães & Mateus Ferreira Chagas & Antonio Bonomi & Leonardo Vasconcelos Fregolente & Marcos Djun Barbosa , 2023. "Production of Sustainable Aviation Fuels from Lignocellulosic Residues in Brazil through Hydrothermal Liquefaction: Techno-Economic and Environmental Assessments," Energies, MDPI, vol. 16(6), pages 1-21, March.
    4. Therasme, Obste & Volk, Timothy A. & Fortier, Marie-Odile & Kim, Youngwoon & Wood, Christopher D. & Ha, HakSoo & Ali, Atif & Brown, Tristan & Malmsheimer, Robert, 2022. "Carbon footprint of biofuels production from forest biomass using hot water extraction and biochemical conversion in the Northeast United States," Energy, Elsevier, vol. 241(C).
    5. Tzanetis, Konstantinos F. & Posada, John A. & Ramirez, Andrea, 2017. "Analysis of biomass hydrothermal liquefaction and biocrude-oil upgrading for renewable jet fuel production: The impact of reaction conditions on production costs and GHG emissions performance," Renewable Energy, Elsevier, vol. 113(C), pages 1388-1398.
    6. Huang, Yi & Yi, Qun & Wei, Guo-qiang & Kang, Jing-xian & Li, Wen-ying & Feng, Jie & Xie, Ke-chang, 2018. "Energy use, greenhouse gases emission and cost effectiveness of an integrated high– and low–temperature Fisher–Tropsch synthesis plant from a lifecycle viewpoint," Applied Energy, Elsevier, vol. 228(C), pages 1009-1019.
    7. Robert S. Weber & Johnathan E. Holladay & Cynthia Jenks & Ellen A. Panisko & Lesley J. Snowden‐Swan & Magdalena Ramirez‐Corredores & Brian Baynes & Largus T. Angenent & Dane Boysen, 2018. "Modularized production of fuels and other value‐added products from distributed, wasted, or stranded feedstocks," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 7(6), November.
    8. Shahinuzzaman, M. & Yaakob, Zahira & Ahmed, Yunus, 2017. "Non-sulphide zeolite catalyst for bio-jet-fuel conversion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 1375-1384.
    9. Lukáš Krátký & Stanislaw Ledakowicz & Radoslaw Slezak & Vojtěch Bělohlav & Peter Peciar & Máté Petrik & Tomáš Jirout & Marián Peciar & Zoltán Siménfalvi & Radek Šulc & Zoltán Szamosi, 2024. "Emerging Sustainability in Carbon Capture and Use Strategies for V4 Countries via Biochemical Pathways: A Review," Sustainability, MDPI, vol. 16(3), pages 1-22, January.
    10. Bi, Zheting & Zhang, Ji & Zhu, Zeying & Liang, Yanna & Wiltowski, Tomasz, 2018. "Generating biocrude from partially defatted Cryptococcus curvatus yeast residues through catalytic hydrothermal liquefaction," Applied Energy, Elsevier, vol. 209(C), pages 435-444.
    11. Tu, Qingshi & Eckelman, Matthew & Zimmerman, Julie Beth, 2018. "Harmonized algal biofuel life cycle assessment studies enable direct process train comparison," Applied Energy, Elsevier, vol. 224(C), pages 494-509.
    12. Pearce, Matthew & Shemfe, Mobolaji & Sansom, Christopher, 2016. "Techno-economic analysis of solar integrated hydrothermal liquefaction of microalgae," Applied Energy, Elsevier, vol. 166(C), pages 19-26.
    13. Ahmad, Salman & Ouenniche, Jamal & Kolosz, Ben W. & Greening, Philip & Andresen, John M. & Maroto-Valer, M. Mercedes & Xu, Bing, 2021. "A stakeholders’ participatory approach to multi-criteria assessment of sustainable aviation fuels production pathways," International Journal of Production Economics, Elsevier, vol. 238(C).
    14. Firas K. Al-Zuhairi & Zaidoon M. Shakor & Ihsan Hamawand, 2023. "Maximizing Liquid Fuel Production from Reformed Biogas by Kinetic Studies and Optimization of Fischer–Tropsch Reactions," Energies, MDPI, vol. 16(19), pages 1-21, October.
    15. Zachary A. Collier & Elizabeth B. Connelly & Thomas L. Polmateer & James H. Lambert, 2017. "Value chain for next-generation biofuels: resilience and sustainability of the product life cycle," Environment Systems and Decisions, Springer, vol. 37(1), pages 22-33, March.
    16. Reddy, Harvind Kumar & Muppaneni, Tapaswy & Ponnusamy, Sundaravadivelnathan & Sudasinghe, Nilusha & Pegallapati, Ambica & Selvaratnam, Thinesh & Seger, Mark & Dungan, Barry & Nirmalakhandan, Nagamany , 2016. "Temperature effect on hydrothermal liquefaction of Nannochloropsis gaditana and Chlorella sp," Applied Energy, Elsevier, vol. 165(C), pages 943-951.
    17. Zhang, Yajing & Bi, Peiyan & Wang, Jicong & Jiang, Peiwen & Wu, Xiaoping & Xue, He & Liu, Junxu & Zhou, Xiaoguo & Li, Quanxin, 2015. "Production of jet and diesel biofuels from renewable lignocellulosic biomass," Applied Energy, Elsevier, vol. 150(C), pages 128-137.
    18. Yang, Jie & He, Quan (Sophia) & Niu, Haibo & Corscadden, Kenneth & Astatkie, Tess, 2018. "Hydrothermal liquefaction of biomass model components for product yield prediction and reaction pathways exploration," Applied Energy, Elsevier, vol. 228(C), pages 1618-1628.
    19. Yilmaz, Nadir & Atmanli, Alpaslan, 2017. "Sustainable alternative fuels in aviation," Energy, Elsevier, vol. 140(P2), pages 1378-1386.
    20. Kroyan, Yuri & Wojcieszyk, Michał & Kaario, Ossi & Larmi, Martti, 2022. "Modeling the impact of sustainable aviation fuel properties on end-use performance and emissions in aircraft jet engines," Energy, Elsevier, vol. 255(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:97:y:2016:i:c:p:1-7. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.