IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v81y2015icp71-77.html
   My bibliography  Save this article

Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations

Author

Listed:
  • Battista, Federico
  • Fino, Debora
  • Erriquens, Flora
  • Mancini, Giuseppe
  • Ruggeri, Bernardo

Abstract

The most abundant agro-food wastes in Puglia (Italy) are derived either from olive oil production, e.g., olive pomace (OP) and olive mill wastewaters (OMW), or from diary activity, e.g., milk whey. All of these wastes have an acidic pH (3.5–5.5), high organic matter volatile solids, a (VS) higher than 50 g/L, and chemical substances such as total nitrogen (TN), total ammonia (TAN) and total phosphorous (TP), which are able to alter the properties of the soil and pollute aquifers in scenarios where they were released into the ground without any treatment. Two types of OP exist but have different chemical characteristics: OP from a two phase centrifugation (OPII) and OP from a three phase centrifugation (OPIII). These differ primarily in their water content, which is higher in OPIII, and in their polyphenol and ammonia content. In the present work, two mixtures of wastes from olive oil and dairy production were prepared and initially tested in a 50 L batch digester. Then, in a scaled up 2 m3 anaerobic reactor a test in continuous mode was realized. Two feeds were tested: a first mixture containing OPII and a second mixture with OPIII. The tests were conducted in mesophilic conditions (35 °C) with a total solid (TS) content of approximately 10% w/w in continuous mode. The test including OPIII showed a productivity of 1.23 LCH4/L d against 0.83 LCH4/L d for the test with OPII, as a consequence of the higher organic content and the simultaneous effect of the minor inhibitory compound (ammonia and polyphenols) concentration in OPIII.

Suggested Citation

  • Battista, Federico & Fino, Debora & Erriquens, Flora & Mancini, Giuseppe & Ruggeri, Bernardo, 2015. "Scaled-up experimental biogas production from two agro-food waste mixtures having high inhibitory compound concentrations," Renewable Energy, Elsevier, vol. 81(C), pages 71-77.
  • Handle: RePEc:eee:renene:v:81:y:2015:i:c:p:71-77
    DOI: 10.1016/j.renene.2015.03.007
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148115001895
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2015.03.007?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Appels, Lise & Lauwers, Joost & Degrève, Jan & Helsen, Lieve & Lievens, Bart & Willems, Kris & Van Impe, Jan & Dewil, Raf, 2011. "Anaerobic digestion in global bio-energy production: Potential and research challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4295-4301.
    2. Pattara, C. & Cappelletti, G.M. & Cichelli, A., 2010. "Recovery and use of olive stones: Commodity, environmental and economic assessment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1484-1489, June.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Serrano & Fernando G. Fermoso & Bernabé Alonso-Fariñas & Guillermo Rodríguez-Gutiérrez & Sergio López & Juan Fernandez-Bolaños & Rafael Borja, 2019. "Long-Term Evaluation of Mesophilic Semi-Continuous Anaerobic Digestion of Olive Mill Solid Waste Pretreated with Steam-Explosion," Energies, MDPI, vol. 12(11), pages 1-13, June.
    2. Chatterjee, Biswabandhu & Mazumder, Debabrata, 2019. "Role of stage-separation in the ubiquitous development of Anaerobic Digestion of Organic Fraction of Municipal Solid Waste: A critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 439-469.
    3. Zhang, Guodong & Wu, Zhiyue & Cheng, Fangqin & Min, Zhang & Lee, Duu-Jong, 2016. "Thermophilic digestion of waste-activated sludge coupled with solar pond," Renewable Energy, Elsevier, vol. 98(C), pages 142-147.
    4. Mancini, G. & Luciano, A. & Bolzonella, D. & Fatone, F. & Viotti, P. & Fino, D., 2021. "A water-waste-energy nexus approach to bridge the sustainability gap in landfill-based waste management regions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    5. Zhang, Quanguo & Hu, Jianjun & Lee, Duu-Jong, 2016. "Biogas from anaerobic digestion processes: Research updates," Renewable Energy, Elsevier, vol. 98(C), pages 108-119.
    6. Battista, Federico & Mancini, Giuseppe & Ruggeri, Bernardo & Fino, Debora, 2016. "Selection of the best pretreatment for hydrogen and bioethanol production from olive oil waste products," Renewable Energy, Elsevier, vol. 88(C), pages 401-407.
    7. Bertasini, Davide & Battista, Federico & Rizzioli, Fabio & Frison, Nicola & Bolzonella, David, 2023. "Decarbonization of the European natural gas grid using hydrogen and methane biologically produced from organic waste: A critical overview," Renewable Energy, Elsevier, vol. 206(C), pages 386-396.
    8. Simona Ciuta & Stefano Antognoni & Elena Cristina Rada & Marco Ragazzi & Adrian Badea & Lucian Ionel Cioca, 2016. "Respirometric Index and Biogas Potential of Different Foods and Agricultural Discarded Biomass," Sustainability, MDPI, vol. 8(12), pages 1-14, December.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Edwards, Joel & Othman, Maazuza & Burn, Stewart, 2015. "A review of policy drivers and barriers for the use of anaerobic digestion in Europe, the United States and Australia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 815-828.
    2. Gahyun Baek & Jaai Kim & Jinsu Kim & Changsoo Lee, 2018. "Role and Potential of Direct Interspecies Electron Transfer in Anaerobic Digestion," Energies, MDPI, vol. 11(1), pages 1-18, January.
    3. Safieddin Ardebili, Seyed Mohammad, 2020. "Green electricity generation potential from biogas produced by anaerobic digestion of farm animal waste and agriculture residues in Iran," Renewable Energy, Elsevier, vol. 154(C), pages 29-37.
    4. Gómez-de la Cruz, Francisco J. & Casanova-Peláez, Pedro J. & Palomar-Carnicero, José M. & Cruz-Peragón, Fernando, 2014. "Drying kinetics of olive stone: A valuable source of biomass obtained in the olive oil extraction," Energy, Elsevier, vol. 75(C), pages 146-152.
    5. Awasthi, Mukesh Kumar & Ferreira, Jorge A. & Sirohi, Ranjna & Sarsaiya, Surendra & Khoshnevisan, Benyamin & Baladi, Samin & Sindhu, Raveendran & Binod, Parameswaran & Pandey, Ashok & Juneja, Ankita & , 2021. "A critical review on the development stage of biorefinery systems towards the management of apple processing-derived waste," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    6. Di Maria, Francesco & Sordi, Alessio & Cirulli, Giuseppe & Micale, Caterina, 2015. "Amount of energy recoverable from an existing sludge digester with the co-digestion with fruit and vegetable waste at reduced retention time," Applied Energy, Elsevier, vol. 150(C), pages 9-14.
    7. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    8. Ghasimi, Dara S.M. & de Kreuk, Merle & Maeng, Sung Kyu & Zandvoort, Marcel H. & van Lier, Jules B., 2016. "High-rate thermophilic bio-methanation of the fine sieved fraction from Dutch municipal raw sewage: Cost-effective potentials for on-site energy recovery," Applied Energy, Elsevier, vol. 165(C), pages 569-582.
    9. Masebinu, S.O. & Akinlabi, E.T. & Muzenda, E. & Aboyade, A.O., 2019. "A review of biochar properties and their roles in mitigating challenges with anaerobic digestion," Renewable and Sustainable Energy Reviews, Elsevier, vol. 103(C), pages 291-307.
    10. Alessio Siciliano & Maria Assuntina Stillitano & Carlo Limonti, 2016. "Energetic Valorization of Wet Olive Mill Wastes through a Suitable Integrated Treatment: H 2 O 2 with Lime and Anaerobic Digestion," Sustainability, MDPI, vol. 8(11), pages 1-15, November.
    11. Heerenklage, J. & Rechtenbach, D. & Atamaniuk, I. & Alassali, A. & Raga, R. & Koch, K. & Kuchta, K., 2019. "Development of a method to produce standardised and storable inocula for biomethane potential tests – Preliminary steps," Renewable Energy, Elsevier, vol. 143(C), pages 753-761.
    12. Donatella Restuccia & Sabrina Antonia Prencipe & Marco Ruggeri & Umile Gianfranco Spizzirri, 2022. "Sustainability Assessment of Different Extra Virgin Olive Oil Extraction Methods through a Life Cycle Thinking Approach: Challenges and Opportunities in the Elaio-Technical Sector," Sustainability, MDPI, vol. 14(23), pages 1-18, November.
    13. Pecchi, Matteo & Baratieri, Marco, 2019. "Coupling anaerobic digestion with gasification, pyrolysis or hydrothermal carbonization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 462-475.
    14. Van Meerbeek, Koenraad & Muys, Bart & Hermy, Martin, 2019. "Lignocellulosic biomass for bioenergy beyond intensive cropland and forests," Renewable and Sustainable Energy Reviews, Elsevier, vol. 102(C), pages 139-149.
    15. Kougias, P.G. & Kotsopoulos, T.A. & Martzopoulos, G.G., 2014. "Effect of feedstock composition and organic loading rate during the mesophilic co-digestion of olive mill wastewater and swine manure," Renewable Energy, Elsevier, vol. 69(C), pages 202-207.
    16. Ghanimeh, Sophia & Khalil, Charbel Abou & Stoecklein, Daniel & Kommasojula, Aditya & Ganapathysubramanian, Baskar, 2020. "Flow sculpting enabled anaerobic digester for energy recovery from low-solid content waste," Renewable Energy, Elsevier, vol. 154(C), pages 841-848.
    17. Tariq, Mohsin & Mehmood, Ayaz & Abbas, Yasir & Rukh, Shah & Shah, Fayyaz Ali & Hassan, Ahmed & Gurmani, Ali Raza & Ahmed, Zahoor & Yun, Sining, 2024. "Digestate quality and biogas enhancement with laterite mineral and biochar: Performance and mechanism in anaerobic digestion," Renewable Energy, Elsevier, vol. 220(C).
    18. Ahmad Dar, Rouf & Ahmad Dar, Eajaz & Kaur, Ajit & Gupta Phutela, Urmila, 2018. "Sweet sorghum-a promising alternative feedstock for biofuel production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 4070-4090.
    19. Lamis Yousra Shahrazed Khelifa Zouaghi & Hayet Djelal & Zineb Salem, 2021. "Anaerobic co-digestion of three organic wastes under mesophilic conditions: lab-scale and pilot-scale studies," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 23(6), pages 9014-9028, June.
    20. Janina Piekutin & Monika Puchlik & Michał Haczykowski & Katarzyna Dyczewska, 2021. "The Efficiency of the Biogas Plant Operation Depending on the Substrate Used," Energies, MDPI, vol. 14(11), pages 1-12, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:81:y:2015:i:c:p:71-77. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.