IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v75y2015icp102-114.html
   My bibliography  Save this article

Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs

Author

Listed:
  • Macquart, Terence
  • Maheri, Alireza

Abstract

This paper presents the results of an investigation into the performance of different controllers in active load control of wind turbine blades equipped with microtabs. A bang–bang (BB) controller, a linear quadratic regulator (LQR) a proportional integral derivative (PID) and a sliding mode controller (SMC) are synthesised for load alleviation. The performance of the synthesised controllers in load alleviation is evaluated by employing WTAC (Wind Turbine Aeroelastic and Control), a wind turbine simulator incorporating an unsteady aerodynamic module, a structural analysis module and a control module. The variable-speed pitch-controlled NREL-5 MW is adopted as the case study. Using frequency domain analysis it is shown that for the studied case all controllers have more or less the same performance at rejecting the first rotational frequency loads. It is also shown that all controllers are more effective at rejecting loads with lower frequencies. BB and PID controllers, although capable of rejecting low frequency loads, may cause amplification of loads with higher frequencies. Investigating the performance of four controllers at different wind speeds for the studied wind turbine, it is observed that the effectiveness of BB and PID controllers reduces with wind speed but on the other hand SMC and LQR perform better at higher wind speeds. Introducing a new parameter, life index, the performance of different controllers in terms of the actuation wear is investigated. It is shown that LQR cause less actuation wear compared to SMC, while having comparable performance in load alleviation.

Suggested Citation

  • Macquart, Terence & Maheri, Alireza, 2015. "Integrated aeroelastic and control analysis of wind turbine blades equipped with microtabs," Renewable Energy, Elsevier, vol. 75(C), pages 102-114.
  • Handle: RePEc:eee:renene:v:75:y:2015:i:c:p:102-114
    DOI: 10.1016/j.renene.2014.09.032
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148114005977
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.09.032?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Maheri, Alireza & Noroozi, Siamak & Toomer, Chris A. & Vinney, John, 2006. "WTAB, a computer program for predicting the performance of horizontal axis wind turbines with adaptive blades," Renewable Energy, Elsevier, vol. 31(11), pages 1673-1685.
    2. Macquart, Terence & Maheri, Alireza & Busawon, Krishna, 2014. "Microtab dynamic modelling for wind turbine blade load rejection," Renewable Energy, Elsevier, vol. 64(C), pages 144-152.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    2. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    3. McKenna, R. & Ostman v.d. Leye, P. & Fichtner, W., 2016. "Key challenges and prospects for large wind turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1212-1221.
    4. Sun, Yukun & Qian, Yaoru & Gao, Yang & Wang, Tongguang & Wang, Long, 2024. "Stall control on the wind turbine airfoil via the single and dual-channel of combining bowing and suction technique," Energy, Elsevier, vol. 290(C).
    5. Macquart, Terence & Maheri, Alireza, 2019. "A stall-regulated wind turbine design to reduce fatigue," Renewable Energy, Elsevier, vol. 133(C), pages 964-970.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Maheri, Alireza & Noroozi, Siamak & Vinney, John, 2007. "Decoupled aerodynamic and structural design of wind turbine adaptive blades," Renewable Energy, Elsevier, vol. 32(10), pages 1753-1767.
    2. Macquart, Terence & Maheri, Alireza & Busawon, Krishna, 2014. "Microtab dynamic modelling for wind turbine blade load rejection," Renewable Energy, Elsevier, vol. 64(C), pages 144-152.
    3. Ebrahimi, Abbas & Movahhedi, Mohammadreza, 2018. "Wind turbine power improvement utilizing passive flow control with microtab," Energy, Elsevier, vol. 150(C), pages 575-582.
    4. Miller, Aaron & Chang, Byungik & Issa, Roy & Chen, Gerald, 2013. "Review of computer-aided numerical simulation in wind energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 25(C), pages 122-134.
    5. Md Zishan Akhter & Farag Khalifa Omar, 2021. "Review of Flow-Control Devices for Wind-Turbine Performance Enhancement," Energies, MDPI, vol. 14(5), pages 1-35, February.
    6. Macquart, Terence & Maheri, Alireza, 2019. "A stall-regulated wind turbine design to reduce fatigue," Renewable Energy, Elsevier, vol. 133(C), pages 964-970.
    7. Arash E. Samani & Jeroen D. M. De Kooning & Nezmin Kayedpour & Narender Singh & Lieven Vandevelde, 2020. "The Impact of Pitch-To-Stall and Pitch-To-Feather Control on the Structural Loads and the Pitch Mechanism of a Wind Turbine," Energies, MDPI, vol. 13(17), pages 1-21, September.
    8. Maheri, Alireza & Noroozi, Siamak & Vinney, John, 2007. "Application of combined analytical/FEA coupled aero-structure simulation in design of wind turbine adaptive blades," Renewable Energy, Elsevier, vol. 32(12), pages 2011-2018.
    9. Bai, Chi-Jeng & Wang, Wei-Cheng, 2016. "Review of computational and experimental approaches to analysis of aerodynamic performance in horizontal-axis wind turbines (HAWTs)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 506-519.
    10. He-Yong Xu & Chen-Liang Qiao & Zheng-Yin Ye, 2016. "Dynamic Stall Control on the Wind Turbine Airfoil via a Co-Flow Jet," Energies, MDPI, vol. 9(6), pages 1-25, June.
    11. Xinkai Li & Ke Yang & Xiaodong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Height on Vortex Characteristics and Airfoil Aerodynamic Performance," Energies, MDPI, vol. 12(5), pages 1-19, March.
    12. Xin-Kai Li & Wei Liu & Ting-Jun Zhang & Pei-Ming Wang & Xiao-Dong Wang, 2019. "Experimental and Numerical Analysis of the Effect of Vortex Generator Installation Angle on Flow Separation Control," Energies, MDPI, vol. 12(23), pages 1-19, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:75:y:2015:i:c:p:102-114. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.