IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v69y2014icp174-179.html
   My bibliography  Save this article

Vortical structures in the wake of the savonius wind turbine by the discrete vortex method

Author

Listed:
  • Afungchui, David
  • Kamoun, Badreddinne
  • Helali, Ali

Abstract

This paper treats the vortex shedding phenomenon of a savonius wind turbine, whose knowledge is primordial in correctly calculating the airloads on the blades. The specific aim being to numerically predict the disposition and geometry of the vortical structures in the wake of the savonius rotor whose existence has been visualised by a number of experimentalists. In the numerical approach, the blade is represented by discrete bound vortices while the wake is generated in a time stepping calculation as an emission of free vortices. The calculations are enhanced by the Newmann boundary condition coupled to the Kutta–Joukowsky condition and the Kelvin's theorem for the conservation of circulation. The convection of the vortices in the wake is accomplished through a predictor corrector integration scheme. A code has been developed which predicts the wake structure to be in good agreement with the experimental visualizations: For low tip speed ratios, the wake consists of a series of three discrete vortical structures while at higher tip speed ratios, the characteristic structure is the presences of a central vortex.

Suggested Citation

  • Afungchui, David & Kamoun, Badreddinne & Helali, Ali, 2014. "Vortical structures in the wake of the savonius wind turbine by the discrete vortex method," Renewable Energy, Elsevier, vol. 69(C), pages 174-179.
  • Handle: RePEc:eee:renene:v:69:y:2014:i:c:p:174-179
    DOI: 10.1016/j.renene.2014.03.038
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S096014811400202X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2014.03.038?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Afungchui, David & Kamoun, Baddreddinne & Helali, Ali & Ben Djemaa, Abdellatif, 2010. "The unsteady pressure field and the aerodynamic performances of a Savonius rotor based on the discrete vortex method," Renewable Energy, Elsevier, vol. 35(1), pages 307-313.
    2. Kamoun, Badreddine & Afungchui, David & Chauvin, Alain, 2005. "A wind turbine blade profile analysis code based on the singularities method," Renewable Energy, Elsevier, vol. 30(3), pages 339-352.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chen, Jian & Chen, Liu & Xu, Hongtao & Yang, Hongxing & Ye, Changwen & Liu, Di, 2016. "Performance improvement of a vertical axis wind turbine by comprehensive assessment of an airfoil family," Energy, Elsevier, vol. 114(C), pages 318-331.
    2. Ducoin, A. & Shadloo, M.S. & Roy, S., 2017. "Direct Numerical Simulation of flow instabilities over Savonius style wind turbine blades," Renewable Energy, Elsevier, vol. 105(C), pages 374-385.
    3. Fanel Dorel Scheaua, 2020. "Comparative Numerical Analysis on Vertical Wind Turbine Rotor Pattern of Bach and Benesh Type," Energies, MDPI, vol. 13(9), pages 1-20, May.
    4. Can Kang & Wisdom Opare & Chen Pan & Ziwen Zou, 2018. "Upstream Flow Control for the Savonius Rotor under Various Operation Conditions," Energies, MDPI, vol. 11(6), pages 1-20, June.
    5. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    6. Bethi, Rajagopal Vinod & Mitra, Santanu & Kumar, Pankaj, 2021. "An OpenFOAM based study of Savonius turbine arrays in tunnels for power maximisation," Renewable Energy, Elsevier, vol. 179(C), pages 1345-1359.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Hcini, Cherif & Abidi, Essia & Kamoun, Badreddine & Afungchui, David, 2017. "A Turbosail profile analysis code based on the panel method," Energy, Elsevier, vol. 118(C), pages 147-155.
    2. Kim, Sanghyeon & Cheong, Cheolung, 2015. "Development of low-noise drag-type vertical wind turbines," Renewable Energy, Elsevier, vol. 79(C), pages 199-208.
    3. Mohammadi, M. & Lakestani, M. & Mohamed, M.H., 2018. "Intelligent parameter optimization of Savonius rotor using Artificial Neural Network and Genetic Algorithm," Energy, Elsevier, vol. 143(C), pages 56-68.
    4. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    5. Damak, A. & Driss, Z. & Abid, M.S., 2013. "Experimental investigation of helical Savonius rotor with a twist of 180°," Renewable Energy, Elsevier, vol. 52(C), pages 136-142.
    6. Zhou, Tong & Rempfer, Dietmar, 2013. "Numerical study of detailed flow field and performance of Savonius wind turbines," Renewable Energy, Elsevier, vol. 51(C), pages 373-381.
    7. Mohammadi, M. & Mohammadi, R. & Ramadan, A. & Mohamed, M.H., 2018. "Numerical investigation of performance refinement of a drag wind rotor using flow augmentation and momentum exchange optimization," Energy, Elsevier, vol. 158(C), pages 592-606.
    8. Roy, Sukanta & Saha, Ujjwal K., 2013. "Review on the numerical investigations into the design and development of Savonius wind rotors," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 73-83.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:69:y:2014:i:c:p:174-179. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.