IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v62y2014icp484-489.html
   My bibliography  Save this article

Semi-automatic construction of a domain ontology for wind energy using Wikipedia articles

Author

Listed:
  • Küçük, Dilek
  • Arslan, Yusuf

Abstract

Domain ontologies are important information sources for knowledge-based systems. Yet, building domain ontologies from scratch is known to be a very labor-intensive process. In this study, we present our semi-automatic approach to building an ontology for the domain of wind energy which is an important type of renewable energy with a growing share in electricity generation all over the world. Related Wikipedia articles are first processed in an automated manner to determine the basic concepts of the domain together with their properties and next the concepts, properties, and relationships are organized to arrive at the ultimate ontology. We also provide pointers to other engineering ontologies which could be utilized together with the proposed wind energy ontology in addition to its prospective application areas. The current study is significant as, to the best of our knowledge, it proposes the first considerably wide-coverage ontology for the wind energy domain and the ontology is built through a semi-automatic process which makes use of the related Web resources, thereby reducing the overall cost of the ontology building process.

Suggested Citation

  • Küçük, Dilek & Arslan, Yusuf, 2014. "Semi-automatic construction of a domain ontology for wind energy using Wikipedia articles," Renewable Energy, Elsevier, vol. 62(C), pages 484-489.
  • Handle: RePEc:eee:renene:v:62:y:2014:i:c:p:484-489
    DOI: 10.1016/j.renene.2013.08.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113004035
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.08.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Pipattanasomporn, Manisa & Feroze, Hassan & Rahman, Saifur, 2012. "Securing critical loads in a PV-based microgrid with a multi-agent system," Renewable Energy, Elsevier, vol. 39(1), pages 166-174.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Andrea Michiorri & Anna Maria Sempreviva & Sean Philipp & Paula Perez-Lopez & Alain Ferriere & David Moser, 2022. "Topic Taxonomy and Metadata to Support Renewable Energy Digitalisation," Energies, MDPI, vol. 15(24), pages 1-23, December.
    2. Alejandro Blanco-M. & Pere Marti-Puig & Karina Gibert & Jordi Cusidó & Jordi Solé-Casals, 2019. "A Text-Mining Approach to Assess the Failure Condition of Wind Turbines Using Maintenance Service History," Energies, MDPI, vol. 12(10), pages 1-20, May.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Obara, Shin’ya & Kawai, Masahito & Kawae, Osamu & Morizane, Yuta, 2013. "Operational planning of an independent microgrid containing tidal power generators, SOFCs, and photovoltaics," Applied Energy, Elsevier, vol. 102(C), pages 1343-1357.
    2. Fontenot, Hannah & Dong, Bing, 2019. "Modeling and control of building-integrated microgrids for optimal energy management – A review," Applied Energy, Elsevier, vol. 254(C).
    3. Coelho, Vitor N. & Weiss Cohen, Miri & Coelho, Igor M. & Liu, Nian & Guimarães, Frederico Gadelha, 2017. "Multi-agent systems applied for energy systems integration: State-of-the-art applications and trends in microgrids," Applied Energy, Elsevier, vol. 187(C), pages 820-832.
    4. Moslehi, Salim & Reddy, T. Agami, 2018. "Sustainability of integrated energy systems: A performance-based resilience assessment methodology," Applied Energy, Elsevier, vol. 228(C), pages 487-498.
    5. Kavousi-Fard, Abdollah & Abunasri, Alireza & Zare, Alireza & Hoseinzadeh, Rasool, 2014. "Impact of plug-in hybrid electric vehicles charging demand on the optimal energy management of renewable micro-grids," Energy, Elsevier, vol. 78(C), pages 904-915.
    6. Kamankesh, Hamidreza & Agelidis, Vassilios G. & Kavousi-Fard, Abdollah, 2016. "Optimal scheduling of renewable micro-grids considering plug-in hybrid electric vehicle charging demand," Energy, Elsevier, vol. 100(C), pages 285-297.
    7. Baziar, Aliasghar & Kavousi-Fard, Abdollah, 2013. "Considering uncertainty in the optimal energy management of renewable micro-grids including storage devices," Renewable Energy, Elsevier, vol. 59(C), pages 158-166.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:62:y:2014:i:c:p:484-489. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.