IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v60y2013icp522-528.html
   My bibliography  Save this article

The study of bimetallic Ni–Co/cordierite catalyst for cracking of tar from biomass pyrolysis

Author

Listed:
  • Lu, Min
  • Lv, Pengmei
  • Yuan, Zhenhong
  • Li, Huiwen

Abstract

In order to crack the tar from biomass pyrolysis, five cordierite-supported monolithic catalysts with different Ni/Co ratio were prepared by vacuum wetness impregnation. All catalysts were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), temperature-programmed reduction (TPR), Brunauer–Emmett–Teller (BET), and scanning electron microscope (SEM). XRD and XPS characterization results show the inexistence of spinel structure such as NiAl2O4 and CoAl2O4. TPR characterization results suggest the possible formation of Ni–Co alloy. BET characterization results show that the effect of Ni/Co ratio on catalyst specific surface area is obvious. The catalytic test results show that the performance of bimetallic catalyst is better than that of monometallic catalyst. The Ni3Co1/cordierite catalyst exhibits the best catalytic performance among all bimetallic catalysts, its tar conversion and gas yield reach 96.4% and 1.21 Nm3/kg, respectively, at a weight hourly space velocity (WHSV) of 1.4 h−1.

Suggested Citation

  • Lu, Min & Lv, Pengmei & Yuan, Zhenhong & Li, Huiwen, 2013. "The study of bimetallic Ni–Co/cordierite catalyst for cracking of tar from biomass pyrolysis," Renewable Energy, Elsevier, vol. 60(C), pages 522-528.
  • Handle: RePEc:eee:renene:v:60:y:2013:i:c:p:522-528
    DOI: 10.1016/j.renene.2013.04.020
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148113002930
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2013.04.020?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Chunshan & Suzuki, Kenzi, 2009. "Tar property, analysis, reforming mechanism and model for biomass gasification--An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(3), pages 594-604, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Das, Bikashbindu & Mohanty, Kaustubha, 2019. "A review on advances in sustainable energy production through various catalytic processes by using catalysts derived from waste red mud," Renewable Energy, Elsevier, vol. 143(C), pages 1791-1811.
    2. Tian, Beile & Mao, Songbo & Guo, Feiqiang & Bai, Jiaming & Shu, Rui & Qian, Lin & Liu, Qi, 2022. "Monolithic biochar-supported cobalt-based catalysts with high-activity and superior-stability for biomass tar reforming," Energy, Elsevier, vol. 242(C).
    3. Dhyani, Vaibhav & Bhaskar, Thallada, 2018. "A comprehensive review on the pyrolysis of lignocellulosic biomass," Renewable Energy, Elsevier, vol. 129(PB), pages 695-716.
    4. Kabir, G. & Hameed, B.H., 2017. "Recent progress on catalytic pyrolysis of lignocellulosic biomass to high-grade bio-oil and bio-chemicals," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 945-967.
    5. Deng, Jin & Gao, Shan & Yang, Tai & Ma, Duo & Luo, Xiaodong & Liu, Hui & Yuan, Shenfu, 2023. "Investigating the promotion of Fe–Co catalyst by alkali and alkaline earth metals of inherent metal minerals for biomass pyrolysis," Renewable Energy, Elsevier, vol. 213(C), pages 134-147.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ahmed, A.M.A & Salmiaton, A. & Choong, T.S.Y & Wan Azlina, W.A.K.G., 2015. "Review of kinetic and equilibrium concepts for biomass tar modeling by using Aspen Plus," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 1623-1644.
    2. Liu, Zhongzhe & Singer, Simcha & Tong, Yiran & Kimbell, Lee & Anderson, Erik & Hughes, Matthew & Zitomer, Daniel & McNamara, Patrick, 2018. "Characteristics and applications of biochars derived from wastewater solids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 650-664.
    3. Farhad Beik & Leon Williams & Tim Brown & Stuart T. Wagland, 2021. "Managing Non-Sewered Human Waste Using Thermochemical Waste Treatment Technologies: A Review," Energies, MDPI, vol. 14(22), pages 1-22, November.
    4. Di Wu & Heming Dong & Jiyi Luan & Qian Du & Jianmin Gao & Dongdong Feng & Yu Zhang & Ziqi Zhao & Dun Li, 2023. "Reaction Molecular Dynamics Study on the Mechanism of Alkali Metal Sodium at the Initial Stage of Naphthalene Pyrolysis Evolution," Energies, MDPI, vol. 16(17), pages 1-19, August.
    5. Jiao, Liguo & Li, Jian & Yan, Beibei & Chen, Guanyi & Ahmed, Sarwaich, 2022. "Microwave torrefaction integrated with gasification: Energy and exergy analyses based on Aspen Plus modeling," Applied Energy, Elsevier, vol. 319(C).
    6. Song, Hee Gaen & Chun, Young Nam, 2020. "Tar decomposition-reforming conversion on microwave-heating carbon receptor," Energy, Elsevier, vol. 199(C).
    7. Ahsanullah Soomro & Shiyi Chen & Shiwei Ma & Wenguo Xiang, 2018. "Catalytic activities of nickel, dolomite, and olivine for tar removal and H2-enriched gas production in biomass gasification process," Energy & Environment, , vol. 29(6), pages 839-867, September.
    8. Wang, Cui & Zhu, Chao & Huang, Jianbing & Li, Linfeng & Jin, Hui, 2021. "Enhancement of depolymerization slag gasification in supercritical water and its gasification performance in fluidized bed reactor," Renewable Energy, Elsevier, vol. 168(C), pages 829-837.
    9. Ud Din, Zia & Zainal, Z.A., 2016. "Biomass integrated gasification–SOFC systems: Technology overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1356-1376.
    10. Huang, Zhen & Zheng, Anqing & Deng, Zhengbing & Wei, Guoqiang & Zhao, Kun & Chen, Dezhen & He, Fang & Zhao, Zengli & Li, Haibin & Li, Fanxing, 2020. "In-situ removal of toluene as a biomass tar model compound using NiFe2O4 for application in chemical looping gasification oxygen carrier," Energy, Elsevier, vol. 190(C).
    11. Nisamaneenate, Jurarat & Atong, Duangduen & Sornkade, Panchaluck & Sricharoenchaikul, Viboon, 2015. "Fuel gas production from peanut shell waste using a modular downdraft gasifier with the thermal integrated unit," Renewable Energy, Elsevier, vol. 79(C), pages 45-50.
    12. Chan, Fan Liang & Tanksale, Akshat, 2014. "Review of recent developments in Ni-based catalysts for biomass gasification," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 428-438.
    13. Li, Xueqin & Liu, Peng & Lei, Tingzhou & Wu, Youqing & Chen, Wenxuan & Wang, Zhiwei & Shi, Jie & Wu, Shiyong & Li, Yanling & Huang, Sheng, 2022. "Pyrolysis of biomass Tar model compound with various Ni-based catalysts: Influence of promoters characteristics on hydrogen-rich gas formation," Energy, Elsevier, vol. 244(PB).
    14. Ly, Hoang Vu & Kim, Seung-Soo & Woo, Hee Chul & Choi, Jae Hyung & Suh, Dong Jin & Kim, Jinsoo, 2015. "Fast pyrolysis of macroalga Saccharina japonica in a bubbling fluidized-bed reactor for bio-oil production," Energy, Elsevier, vol. 93(P2), pages 1436-1446.
    15. Rakesh N, & Dasappa, S., 2018. "A critical assessment of tar generated during biomass gasification - Formation, evaluation, issues and mitigation strategies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 1045-1064.
    16. Bendoni, R. & Miccio, F. & Medri, V. & Benito, P. & Vaccari, A. & Landi, E., 2019. "Geopolymer composites for the catalytic cleaning of tar in biomass-derived gas," Renewable Energy, Elsevier, vol. 131(C), pages 1107-1116.
    17. Anis, Samsudin & Zainal, Z.A., 2011. "Tar reduction in biomass producer gas via mechanical, catalytic and thermal methods: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(5), pages 2355-2377, June.
    18. Zhang, Zhanming & Zhang, Lijun & Liu, Fang & Sun, Yifan & Shao, Yuewen & Sun, Kai & Zhang, Shu & Liu, Qing & Hu, Guangzhi & Hu, Xun, 2020. "Tailoring the surface properties of Ni/SiO2 catalyst with sulfuric acid for enhancing the catalytic efficiency for steam reforming of guaiacol," Renewable Energy, Elsevier, vol. 156(C), pages 423-439.
    19. Yang, Xiaoxia & Tian, Sicong & Kan, Tao & Zhu, Yuxiang & Xu, Honghui & Strezov, Vladimir & Nelson, Peter & Jiang, Yijiao, 2019. "Sorption-enhanced thermochemical conversion of sewage sludge to syngas with intensified carbon utilization," Applied Energy, Elsevier, vol. 254(C).
    20. Zeng, Kuo & Gauthier, Daniel & Li, Rui & Flamant, Gilles, 2017. "Combined effects of initial water content and heating parameters on solar pyrolysis of beech wood," Energy, Elsevier, vol. 125(C), pages 552-561.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:60:y:2013:i:c:p:522-528. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.