IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v52y2013icp88-94.html
   My bibliography  Save this article

A decision support system for optimal storing and supply of wood in a Finnish CHP plant

Author

Listed:
  • Palander, Teijo
  • Voutilainen, Juuso

Abstract

In this study, a decision support system to large-scale and long-term fuel procurement scheduling problems is considered for sustainable energy production. The problems include the allocation of a number of forest biomass procurement chains to an energy plant during different periods. In Finland district and roadside terminals are commonly used as forest fuel buffers of energy plants. However, due to the complex nature of the decentralized procurement problem, it is recently considered as an inefficient procurement chain. Therefore we tested the developed terminal planning system using plant terminal technology and forest fuel buffer decisions to better describe the combinatorial complexity of energy flows. We decoded the dynamic linear optimization program to the decision support system. This makes the approach usable by managers without requiring them to learn advanced programming skills. The total operating costs decreased 14.1% from 5.9 to 5.1 million Euros when the plant terminal technology was included. The properties of the decision support system are discussed and we present two examples of how the system works based on real-world data and plant terminal technology rate (500%) as an optional terminal buffer constraint.

Suggested Citation

  • Palander, Teijo & Voutilainen, Juuso, 2013. "A decision support system for optimal storing and supply of wood in a Finnish CHP plant," Renewable Energy, Elsevier, vol. 52(C), pages 88-94.
  • Handle: RePEc:eee:renene:v:52:y:2013:i:c:p:88-94
    DOI: 10.1016/j.renene.2012.10.016
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006532
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.10.016?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lund, P.D., 2007. "The link between political decision-making and energy options: Assessing future role of renewable energy and energy efficiency in Finland," Energy, Elsevier, vol. 32(12), pages 2271-2281.
    2. Ouammi, Ahmed & Ghigliotti, Valeria & Robba, Michela & Mimet, Abdelaziz & Sacile, Roberto, 2012. "A decision support system for the optimal exploitation of wind energy on regional scale," Renewable Energy, Elsevier, vol. 37(1), pages 299-309.
    3. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part I: Power generation," Energy, Elsevier, vol. 35(8), pages 3143-3154.
    4. Li, Hongtao & Maréchal, François & Burer, Meinrad & Favrat, Daniel, 2006. "Multi-objective optimization of an advanced combined cycle power plant including CO2 separation options," Energy, Elsevier, vol. 31(15), pages 3117-3134.
    5. Palander, Teijo, 2011. "Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels," Energy, Elsevier, vol. 36(10), pages 5984-5993.
    6. Hillring, B, 2003. "Incentives for co-firing in bio-fuelled industrial steam, heat and power production—Swedish experiences," Renewable Energy, Elsevier, vol. 28(5), pages 843-848.
    7. Li, Hongtao & Marechal, Francois & Favrat, Daniel, 2010. "Power and cogeneration technology environomic performance typification in the context of CO2 abatement part II: Combined heat and power cogeneration," Energy, Elsevier, vol. 35(9), pages 3517-3523.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Kühmaier, Martin & Erber, Gernot & Kanzian, Christian & Holzleitner, Franz & Stampfer, Karl, 2016. "Comparison of costs of different terminal layouts for fuel wood storage," Renewable Energy, Elsevier, vol. 87(P1), pages 544-551.
    2. Barbosa-Póvoa, Ana Paula & da Silva, Cátia & Carvalho, Ana, 2018. "Opportunities and challenges in sustainable supply chain: An operations research perspective," European Journal of Operational Research, Elsevier, vol. 268(2), pages 399-431.
    3. Palander, Teijo & Haavikko, Hanna & Kärhä, Kalle, 2018. "Towards sustainable wood procurement in forest industry – The energy efficiency of larger and heavier vehicles in Finland," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 100-118.
    4. Pablo Benalcazar & Jacek Kamiński & Karol Stós, 2022. "An Integrated Approach to Long-Term Fuel Supply Planning in Combined Heat and Power Systems," Energies, MDPI, vol. 15(22), pages 1-22, November.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Palander, Teijo, 2011. "Technical and economic analysis of electricity generation from forest, fossil, and wood-waste fuels in a Finnish heating plant," Energy, Elsevier, vol. 36(9), pages 5579-5590.
    2. Palander, Teijo, 2011. "Modelling renewable supply chain for electricity generation with forest, fossil, and wood-waste fuels," Energy, Elsevier, vol. 36(10), pages 5984-5993.
    3. Dabwan, Yousef N. & Gang, Pei & Li, Jing & Gao, Guangtao & Feng, Junsheng, 2018. "Development and assessment of integrating parabolic trough collectors with gas turbine trigeneration system for producing electricity, chilled water, and freshwater," Energy, Elsevier, vol. 162(C), pages 364-379.
    4. Huang, Y. & McIlveen-Wright, D.R. & Rezvani, S. & Huang, M.J. & Wang, Y.D. & Roskilly, A.P. & Hewitt, N.J., 2013. "Comparative techno-economic analysis of biomass fuelled combined heat and power for commercial buildings," Applied Energy, Elsevier, vol. 112(C), pages 518-525.
    5. Im, Yong-Hoon & Liu, Jie, 2018. "Feasibility study on the low temperature district heating and cooling system with bi-lateral heat trades model," Energy, Elsevier, vol. 153(C), pages 988-999.
    6. Cvetinović, Dejan & Stefanović, Predrag & Marković, Zoran & Bakić, Vukman & Turanjanin, Valentina & Jovanović, Marina & Vučićević, Biljana, 2013. "GHG (Greenhouse Gases) emission inventory and mitigation measures for public district heating plants in the Republic of Serbia," Energy, Elsevier, vol. 57(C), pages 788-795.
    7. Ziębik, Andrzej & Gładysz, Paweł, 2012. "Optimal coefficient of the share of cogeneration in district heating systems," Energy, Elsevier, vol. 45(1), pages 220-227.
    8. Gentry, Matthew, 2019. "Local heat, local food: Integrating vertical hydroponic farming with district heating in Sweden," Energy, Elsevier, vol. 174(C), pages 191-197.
    9. Staffell, Iain, 2015. "Zero carbon infinite COP heat from fuel cell CHP," Applied Energy, Elsevier, vol. 147(C), pages 373-385.
    10. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A., 2017. "Optimal integration of solar energy with fossil fuel gas turbine cogeneration plants using three different CSP technologies in Saudi Arabia," Applied Energy, Elsevier, vol. 185(P2), pages 1268-1280.
    11. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H. & Sajjakulnukit, Boonrod, 2011. "Economic feasibility assessment of rice straw utilization for electricity generating through combustion in Thailand," Applied Energy, Elsevier, vol. 88(11), pages 3651-3658.
    12. Mokheimer, Esmail M.A. & Dabwan, Yousef N. & Habib, Mohamed A. & Said, Syed A.M. & Al-Sulaiman, Fahad A., 2015. "Development and assessment of integrating parabolic trough collectors with steam generation side of gas turbine cogeneration systems in Saudi Arabia," Applied Energy, Elsevier, vol. 141(C), pages 131-142.
    13. Kazemi-Beydokhti, Amin & Zeinali Heris, Saeed, 2012. "Thermal optimization of combined heat and power (CHP) systems using nanofluids," Energy, Elsevier, vol. 44(1), pages 241-247.
    14. Li, Yan & Fu, Lin & Zhang, Shigang & Zhao, Xiling, 2011. "A new type of district heating system based on distributed absorption heat pumps," Energy, Elsevier, vol. 36(7), pages 4570-4576.
    15. Verma, Aman & Olateju, Babatunde & Kumar, Amit, 2015. "Greenhouse gas abatement costs of hydrogen production from underground coal gasification," Energy, Elsevier, vol. 85(C), pages 556-568.
    16. Ye, Xuemin & Li, Chunxi, 2013. "A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method," Energy Policy, Elsevier, vol. 60(C), pages 290-295.
    17. Luo, Xianglong & Zhang, Bingjian & Chen, Ying & Mo, Songping, 2012. "Operational planning optimization of multiple interconnected steam power plants considering environmental costs," Energy, Elsevier, vol. 37(1), pages 549-561.
    18. Gładysz, Paweł & Ziębik, Andrzej, 2013. "Complex analysis of the optimal coefficient of the share of cogeneration in district heating systems," Energy, Elsevier, vol. 62(C), pages 12-22.
    19. Bakhshmand, Sina Kazemi & Saray, Rahim Khoshbakhti & Bahlouli, Keyvan & Eftekhari, Hajar & Ebrahimi, Afshin, 2015. "Exergoeconomic analysis and optimization of a triple-pressure combined cycle plant using evolutionary algorithm," Energy, Elsevier, vol. 93(P1), pages 555-567.
    20. Peter Lund, 2012. "The European Union challenge: integration of energy, climate, and economic policy," Wiley Interdisciplinary Reviews: Energy and Environment, Wiley Blackwell, vol. 1(1), pages 60-68, July.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:52:y:2013:i:c:p:88-94. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.