IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp247-254.html
   My bibliography  Save this article

Tidal effect compensation system for point absorbing wave energy converters

Author

Listed:
  • Castellucci, Valeria
  • Waters, Rafael
  • Eriksson, Markus
  • Leijon, Mats

Abstract

Recent studies show that there is a correlation between water level and energy absorption values for the studied wave energy converters: the absorption decreases when the water levels deviate from average. The situation appears during tides when the water level changes significantly. The main objective of the paper is to present a first attempt to increase the energy absorption during tides by designing and realizing a small-scale model of a point absorber equipped with a device that is able to adjust the length of the rope connected to the generator. The adjustment is achieved by a screw that moves upwards in the presence of low tides and downwards in the presence of high tides. Numerical results as well as experimental tests suggest that the solution adopted to minimize the tidal effect on the power generation shows potential for further development.

Suggested Citation

  • Castellucci, Valeria & Waters, Rafael & Eriksson, Markus & Leijon, Mats, 2013. "Tidal effect compensation system for point absorbing wave energy converters," Renewable Energy, Elsevier, vol. 51(C), pages 247-254.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:247-254
    DOI: 10.1016/j.renene.2012.09.043
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112006143
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.09.043?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Henderson, Ross, 2006. "Design, simulation, and testing of a novel hydraulic power take-off system for the Pelamis wave energy converter," Renewable Energy, Elsevier, vol. 31(2), pages 271-283.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Guizzi, Giuseppe Leo & Manno, Michele & Manzi, Guido & Salvatori, Marco & Serpella, Domenico, 2014. "Preliminary study on a kinetic energy recovery system for sailing yachts," Renewable Energy, Elsevier, vol. 62(C), pages 216-225.
    2. Ekström, Rickard & Ekergård, Boel & Leijon, Mats, 2015. "Electrical damping of linear generators for wave energy converters—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 116-128.
    3. Valeria Castellucci & Johan Abrahamsson & Tobias Kamf & Rafael Waters, 2015. "Nearshore Tests of the Tidal Compensation System for Point-Absorbing Wave Energy Converters," Energies, MDPI, vol. 8(4), pages 1-20, April.
    4. Yue Hong & Mikael Eriksson & Cecilia Boström & Rafael Waters, 2016. "Impact of Generator Stroke Length on Energy Production for a Direct Drive Wave Energy Converter," Energies, MDPI, vol. 9(9), pages 1-12, September.
    5. Jinming Wu & Yingxue Yao & Wei Li & Liang Zhou & Malin Göteman, 2017. "Optimizing the Performance of Solo Duck Wave Energy Converter in Tide," Energies, MDPI, vol. 10(3), pages 1-19, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yu, Hui-Feng & Zhang, Yong-Liang & Zheng, Si-Ming, 2016. "Numerical study on the performance of a wave energy converter with three hinged bodies," Renewable Energy, Elsevier, vol. 99(C), pages 1276-1286.
    2. Dina Silva & Eugen Rusu & Carlos Guedes Soares, 2013. "Evaluation of Various Technologies for Wave Energy Conversion in the Portuguese Nearshore," Energies, MDPI, vol. 6(3), pages 1-21, March.
    3. Ilyas, Arqam & Kashif, Syed A.R. & Saqib, Muhammad A. & Asad, Muhammad M., 2014. "Wave electrical energy systems: Implementation, challenges and environmental issues," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 260-268.
    4. Brenda Rojas-Delgado & Monica Alonso & Hortensia Amaris & Juan de Santiago, 2019. "Wave Power Output Smoothing through the Use of a High-Speed Kinetic Buffer," Energies, MDPI, vol. 12(11), pages 1-28, June.
    5. Adriano Silva Bastos & Tâmara Rita Costa de Souza & Dieimys Santos Ribeiro & Mirian de Lourdes Noronha Motta Melo & Carlos Barreira Martinez, 2023. "Wave Energy Generation in Brazil: A Georeferenced Oscillating Water Column Inventory," Energies, MDPI, vol. 16(8), pages 1-24, April.
    6. Gaspar, José F. & Calvário, Miguel & Kamarlouei, Mojtaba & Guedes Soares, C., 2016. "Power take-off concept for wave energy converters based on oil-hydraulic transformer units," Renewable Energy, Elsevier, vol. 86(C), pages 1232-1246.
    7. Yong Wan & Chenqing Fan & Jie Zhang & Junmin Meng & Yongshou Dai & Ligang Li & Weifeng Sun & Peng Zhou & Jing Wang & Xudong Zhang, 2017. "Wave Energy Resource Assessment off the Coast of China around the Zhoushan Islands," Energies, MDPI, vol. 10(9), pages 1-25, September.
    8. Yu Zhou & Chongwei Zhang & Dezhi Ning, 2018. "Hydrodynamic Investigation of a Concentric Cylindrical OWC Wave Energy Converter," Energies, MDPI, vol. 11(4), pages 1-23, April.
    9. Sierra, J.P. & Martín, C. & Mösso, C. & Mestres, M. & Jebbad, R., 2016. "Wave energy potential along the Atlantic coast of Morocco," Renewable Energy, Elsevier, vol. 96(PA), pages 20-32.
    10. Addy Wahyudie & Tri Bagus Susilo & Fatima Alaryani & Cuk Supriyadi Ali Nandar & Mohammed Abdi Jama & Abdulrahman Daher & Hussain Shareef, 2020. "Wave Power Assessment in the Middle Part of the Southern Coast of Java Island," Energies, MDPI, vol. 13(10), pages 1-19, May.
    11. Yu, Tongshun & Shi, Hongda & Song, Wenfu, 2018. "Rotational characteristics and capture efficiency of a variable guide vane wave energy converter," Renewable Energy, Elsevier, vol. 122(C), pages 275-290.
    12. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Guedes Soares, C., 2017. "Analysis of electrical drive speed control limitations of a power take-off system for wave energy converters," Renewable Energy, Elsevier, vol. 113(C), pages 335-346.
    13. Shi, Xueli & Li, Shaowu & Liang, Bingchen & Zhao, Jianchun & Liu, Ye & Wang, Zhenlu, 2023. "Numerical study on the impact of wave-current interaction on wave energy resource assessments in Zhoushan sea area, China," Renewable Energy, Elsevier, vol. 215(C).
    14. Jeon, Jooyoung & Taylor, James W., 2016. "Short-term density forecasting of wave energy using ARMA-GARCH models and kernel density estimation," International Journal of Forecasting, Elsevier, vol. 32(3), pages 991-1004.
    15. Martinelli, Luca & Zanuttigh, Barbara & Kofoed, Jens Peter, 2011. "Selection of design power of wave energy converters based on wave basin experiments," Renewable Energy, Elsevier, vol. 36(11), pages 3124-3132.
    16. Wei, Zhiwen & Shi, Hongda & Cao, Feifei & Yu, Mingqi & Li, Ming & Chen, Zhen & Liu, Peng, 2024. "Study on the power performance of wave energy converters mounted around an offshore wind turbine jacket platform," Renewable Energy, Elsevier, vol. 221(C).
    17. Yulong Liu & Xiaodong Zhang & Shuangxia Niu & Weinong Fu & Xinhua Guo, 2020. "Design and Analysis of a Linear Memory Machine for Ocean Wave Power Generation," Energies, MDPI, vol. 13(19), pages 1-12, October.
    18. Filianoti, Pasquale & Camporeale, Sergio M., 2008. "A linearized model for estimating the performance of submerged resonant wave energy converters," Renewable Energy, Elsevier, vol. 33(4), pages 631-641.
    19. Gaspar, José F. & Kamarlouei, Mojtaba & Sinha, Ashank & Xu, Haitong & Calvário, Miguel & Faÿ, François-Xavier & Robles, Eider & Soares, C. Guedes, 2016. "Speed control of oil-hydraulic power take-off system for oscillating body type wave energy converters," Renewable Energy, Elsevier, vol. 97(C), pages 769-783.
    20. Penalba, Markel & Giorgi, Giussepe & Ringwood, John V., 2017. "Mathematical modelling of wave energy converters: A review of nonlinear approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1188-1207.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:247-254. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.