IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v51y2013icp170-174.html
   My bibliography  Save this article

Production of bio-ethanol from three varieties of dates

Author

Listed:
  • Louhichi, Boulbaba
  • Belgaib, Jalel
  • benamor, Hedi
  • Hajji, Nejib

Abstract

In this work, production of bio-ethanol from three varieties of dates (Kunta, Eguoua and Bouhatem) produced in the region of Gabes-Tunisa was studied. A comparison between soxhlet and solvent extraction of a juice obtained from the dates was made. The alcoholic fermentation of this juice by Saccharomyces cerevisiae was investigated under sugar concentration near 200 g L−1 at 30 °C and natural pH. The obtained results showed that all the tested varieties allowed producing ethanol with a concentration around 25% (V/V). Moreover the yeast used in the fermentation process is capable of producing alcohol even at a pH of 3.8.

Suggested Citation

  • Louhichi, Boulbaba & Belgaib, Jalel & benamor, Hedi & Hajji, Nejib, 2013. "Production of bio-ethanol from three varieties of dates," Renewable Energy, Elsevier, vol. 51(C), pages 170-174.
  • Handle: RePEc:eee:renene:v:51:y:2013:i:c:p:170-174
    DOI: 10.1016/j.renene.2012.07.028
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004545
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.07.028?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Snunkhaem Echaroj & Hwai Chyuan Ong & Xiuhan Chen, 2020. "Simulation of Mixing Intensity Profile for Bioethanol Production via Two-Step Fermentation in an Unbaffled Agitator Reactor," Energies, MDPI, vol. 13(20), pages 1-11, October.
    2. Taghizadeh-Alisaraei, Ahmad & Motevali, Ali & Ghobadian, Barat, 2019. "Ethanol production from date wastes: Adapted technologies, challenges, and global potential," Renewable Energy, Elsevier, vol. 143(C), pages 1094-1110.
    3. Morais, Ricardo R. & Pascoal, Aline M. & Pereira-Júnior, Marcos A. & Batista, Karla A. & Rodriguez, Armando G. & Fernandes, Kátia F., 2019. "Bioethanol production from Solanum lycocarpum starch: A sustainable non-food energy source for biofuels," Renewable Energy, Elsevier, vol. 140(C), pages 361-366.
    4. Gurevich Messina, L.I. & Bonelli, P.R. & Cukierman, A.L., 2017. "Effect of acid pretreatment and process temperature on characteristics and yields of pyrolysis products of peanut shells," Renewable Energy, Elsevier, vol. 114(PB), pages 697-707.
    5. Zabed, H. & Sahu, J.N. & Suely, A. & Boyce, A.N. & Faruq, G., 2017. "Bioethanol production from renewable sources: Current perspectives and technological progress," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 475-501.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:51:y:2013:i:c:p:170-174. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.