IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v50y2013icp662-669.html
   My bibliography  Save this article

Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model

Author

Listed:
  • Urbina, Raul
  • Peterson, Michael L.
  • Kimball, Richard W.
  • deBree, Geoffrey S.
  • Cameron, Matthew P.

Abstract

This work details the implementation of a modified Beddoes Leishman model into a Free Vortex Method (FVM) to predict the performance of Darrieus turbines. The model uses Sheng's consideration of the reduced pitch rate influence on the dynamic loads over the foil and revised Kirchhoff flow equations to calculate lift and drag at extended ranges of angles of attack. A simple consideration of the Reynolds number cyclic variation on the blades characteristic of the Darrieus turbines is also implemented. Comparison with published and experimental data at a range of chord to radius ratio shows good agreement.

Suggested Citation

  • Urbina, Raul & Peterson, Michael L. & Kimball, Richard W. & deBree, Geoffrey S. & Cameron, Matthew P., 2013. "Modeling and validation of a cross flow turbine using free vortex model and a modified dynamic stall model," Renewable Energy, Elsevier, vol. 50(C), pages 662-669.
  • Handle: RePEc:eee:renene:v:50:y:2013:i:c:p:662-669
    DOI: 10.1016/j.renene.2012.08.011
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148112004806
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2012.08.011?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Khan, M.J. & Bhuyan, G. & Iqbal, M.T. & Quaicoe, J.E., 2009. "Hydrokinetic energy conversion systems and assessment of horizontal and vertical axis turbines for river and tidal applications: A technology status review," Applied Energy, Elsevier, vol. 86(10), pages 1823-1835, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Wang, Lu & Yeung, Ronald W., 2016. "On the performance of a micro-scale Bach-type turbine as predicted by discrete-vortex simulations," Applied Energy, Elsevier, vol. 183(C), pages 823-836.
    2. Epps, Brenden P. & Roesler, Bernard T. & Medvitz, Richard B. & Choo, Yeunun & McEntee, Jarlath, 2019. "A viscous vortex lattice method for analysis of cross-flow propellers and turbines," Renewable Energy, Elsevier, vol. 143(C), pages 1035-1052.
    3. Urbina, Raul & Epps, Brenden P. & Peterson, Michael L. & Kimball, Richard W., 2019. "A dynamic stall model for analysis of cross-flow turbines using discrete vortex methods," Renewable Energy, Elsevier, vol. 130(C), pages 1130-1145.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Vermaak, Herman Jacobus & Kusakana, Kanzumba & Koko, Sandile Philip, 2014. "Status of micro-hydrokinetic river technology in rural applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 625-633.
    2. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Francisco, Francisco & Molander, Sverker, 2012. "Simplified site-screening method for micro tidal current turbines applied in Mozambique," Renewable Energy, Elsevier, vol. 44(C), pages 414-422.
    3. Nishi, Yasuyuki & Sato, Genki & Shiohara, Daishi & Inagaki, Terumi & Kikuchi, Norio, 2017. "Performance characteristics of axial flow hydraulic turbine with a collection device in free surface flow field," Renewable Energy, Elsevier, vol. 112(C), pages 53-62.
    4. Hammar, Linus & Ehnberg, Jimmy & Mavume, Alberto & Cuamba, Boaventura C. & Molander, Sverker, 2012. "Renewable ocean energy in the Western Indian Ocean," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(7), pages 4938-4950.
    5. Zarzuelo, Carmen & López-Ruiz, Alejandro & Ortega-Sánchez, Miguel, 2018. "Impact of human interventions on tidal stream power: The case of Cádiz Bay," Energy, Elsevier, vol. 145(C), pages 88-104.
    6. Qian, Peng & Feng, Bo & Liu, Hao & Tian, Xiange & Si, Yulin & Zhang, Dahai, 2019. "Review on configuration and control methods of tidal current turbines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 108(C), pages 125-139.
    7. Mansoor Ahmed Zaib & Arbaz Waqar & Shoukat Abbas & Saeed Badshah & Sajjad Ahmad & Muhammad Amjad & Seyed Saeid Rahimian Koloor & Mohamed Eldessouki, 2022. "Effect of Blade Diameter on the Performance of Horizontal-Axis Ocean Current Turbine," Energies, MDPI, vol. 15(15), pages 1-13, July.
    8. Liu, Yijin & Li, Ye & He, Fenglan & Wang, Haifeng, 2017. "Comparison study of tidal stream and wave energy technology development between China and some Western Countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 701-716.
    9. Le, Tuyen Quang & Ko, Jin Hwan, 2015. "Effect of hydrofoil flexibility on the power extraction of a flapping tidal generator via two- and three-dimensional flow simulations," Renewable Energy, Elsevier, vol. 80(C), pages 275-285.
    10. Segura, E. & Morales, R. & Somolinos, J.A., 2018. "A strategic analysis of tidal current energy conversion systems in the European Union," Applied Energy, Elsevier, vol. 212(C), pages 527-551.
    11. Elbatran, A.H. & Ahmed, Yasser M. & Shehata, Ahmed S., 2017. "Performance study of ducted nozzle Savonius water turbine, comparison with conventional Savonius turbine," Energy, Elsevier, vol. 134(C), pages 566-584.
    12. Li, Ningyu & Park, Hongrae & Sun, Hai & Bernitsas, Michael M., 2022. "Hydrokinetic energy conversion using flow induced oscillations of single-cylinder with large passive turbulence control," Applied Energy, Elsevier, vol. 308(C).
    13. Soudan, Bassel, 2019. "Community-scale baseload generation from marine energy," Energy, Elsevier, vol. 189(C).
    14. Milne, I.A. & Day, A.H. & Sharma, R.N. & Flay, R.G.J., 2015. "Blade loading on tidal turbines for uniform unsteady flow," Renewable Energy, Elsevier, vol. 77(C), pages 338-350.
    15. Domenech, John & Eveleigh, Timothy & Tanju, Bereket, 2018. "Marine Hydrokinetic (MHK) systems: Using systems thinking in resource characterization and estimating costs for the practical harvest of electricity from tidal currents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 723-730.
    16. Javidsharifi, Mahshid & Niknam, Taher & Aghaei, Jamshid & Mokryani, Geev, 2018. "Multi-objective short-term scheduling of a renewable-based microgrid in the presence of tidal resources and storage devices," Applied Energy, Elsevier, vol. 216(C), pages 367-381.
    17. Jha, Sunil Kr. & Bilalovic, Jasmin & Jha, Anju & Patel, Nilesh & Zhang, Han, 2017. "Renewable energy: Present research and future scope of Artificial Intelligence," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 297-317.
    18. Holanda, Patrícia da Silva & Blanco, Claudio José Cavalcante & Mesquita, André Luiz Amarante & Brasil Junior, Antônio César Pinho & de Figueiredo, Nelio Moura & Macêdo, Emanuel Negrão & Secretan, Yves, 2017. "Assessment of hydrokinetic energy resources downstream of hydropower plants," Renewable Energy, Elsevier, vol. 101(C), pages 1203-1214.
    19. Tian, Wenlong & VanZwieten, James H. & Pyakurel, Parakram & Li, Yanjun, 2016. "Influences of yaw angle and turbulence intensity on the performance of a 20 kW in-stream hydrokinetic turbine," Energy, Elsevier, vol. 111(C), pages 104-116.
    20. Faruk Guner & Hilmi Zenk, 2020. "Experimental, Numerical and Application Analysis of Hydrokinetic Turbine Performance with Fixed Rotating Blades," Energies, MDPI, vol. 13(3), pages 1-15, February.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:50:y:2013:i:c:p:662-669. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.